Your browser doesn't support javascript.
loading
Multiscale Materials Engineering via Self-Assembly of Pentapeptide Derivatives from SARS CoV E Protein.
Sarkar, Dibakar; Khan, Aftab Hossain; Polepalli, Sainath; Sarkar, Riddhiman; Das, Prasanta Kumar; Dutta, Somnath; Sahoo, Nirakar; Bhunia, Anirban.
Afiliación
  • Sarkar D; Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata, 700 091, India.
  • Khan AH; School of Biological Sciences, Indian Association for the Cultivation of Science, 2A&B Raja S C Mullick Road, Kolkata, 700 032, India.
  • Polepalli S; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560 012, India.
  • Sarkar R; Technische Universität München, 85748, Garching, Germany.
  • Das PK; School of Biological Sciences, Indian Association for the Cultivation of Science, 2A&B Raja S C Mullick Road, Kolkata, 700 032, India.
  • Dutta S; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560 012, India.
  • Sahoo N; School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA.
  • Bhunia A; Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN 80, Kolkata, 700 091, India.
Small ; : e2404373, 2024 Jul 16.
Article en En | MEDLINE | ID: mdl-39011730
ABSTRACT
Short peptide-based supramolecular hydrogels hold enormous potential for a wide range of applications. However, the gelation of these systems is very challenging to control. Minor changes in the peptide sequence can significantly influence the self-assembly mechanism and thereby the gelation propensity. The involvement of SARS CoV E protein in the assembly and release of the virus suggests that it may have inherent self-assembling properties that can contribute to the development of hydrogels. Here, three pentapeptide sequences derived from C-terminal of SARS CoV E protein are explored with same amino acid residues but different sequence distributions and discovered a drastic difference in the gelation propensity. By combining spectroscopic and microscopic techniques, the relationship between peptide sequence arrangement and molecular assembly structure are demonstrated, and how these influence the mechanical properties of the hydrogel. The present study expands the variety of secondary structures for generating supramolecular hydrogels by introducing the 310-helix as the primary building block for gelation, facilitated by a water-mediated structural transition into ß-sheet conformation. Moreover, these Fmoc-modified pentapeptide hydrogels/supramolecular assemblies with tunable morphology and mechanical properties are suitable for tissue engineering, injectable delivery, and 3D bio-printing applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Alemania