Your browser doesn't support javascript.
loading
Leveraging binding pose metadynamics to optimise target fishing predictions for three diverse ligands and their true targets.
Yau, Mei Qian; Wan, Angeline J; Tiong, Aaron S H; Yiap, Yong Sheng; Loo, Jason S E.
Afiliación
  • Yau MQ; School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia.
  • Wan AJ; Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya, Selangor, Malaysia.
  • Tiong ASH; School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia.
  • Yiap YS; School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia.
  • Loo JSE; School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia.
Chem Biol Drug Des ; 104(1): e14591, 2024 Jul.
Article en En | MEDLINE | ID: mdl-39010276
ABSTRACT
Computational target fishing plays an important role in target identification, particularly in drug discovery campaigns utilizing phenotypic screening. Numerous approaches exist to predict potential targets for a given ligand, but true targets may be inconsistently ranked. More advanced simulation methods may provide benefit in such cases by reranking these initial predictions. We evaluated the ability of binding pose metadynamics to improve the predicted rankings for three diverse ligands and their six true targets. Initial predictions using pharmacophore mapping showed no true targets ranked in the top 50 and two targets each ranked within the 50-100, 100-150, and 250-300 ranges respectively. Following binding pose metadynamics, ranking of true targets improved for four out of the six targets and included the highest ranked predictions overall, while rankings deteriorated for two targets. The revised rankings predicted two true targets ranked within the top 50, and one target each within the 50-100, 100-150, 150-200, and 200-250 ranges respectively. The findings of this study demonstrate that binding pose metadynamics may be of benefit in refining initial predictions from structure-based target fishing algorithms, thereby improving the efficiency of the target identification process in drug discovery efforts.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Unión Proteica Límite: Humans Idioma: En Revista: Chem Biol Drug Des Asunto de la revista: BIOQUIMICA / FARMACIA / FARMACOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Malasia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Unión Proteica Límite: Humans Idioma: En Revista: Chem Biol Drug Des Asunto de la revista: BIOQUIMICA / FARMACIA / FARMACOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Malasia Pais de publicación: Reino Unido