Your browser doesn't support javascript.
loading
Exploring High-Spin Color Centers in Wide Band Gap Semiconductors SiC: A Comprehensive Magnetic Resonance Investigation (EPR and ENDOR Analysis).
Latypova, Larisa; Murzakhanov, Fadis; Mamin, George; Sadovnikova, Margarita; von Bardeleben, Hans Jurgen; Rau, Julietta V; Gafurov, Marat.
Afiliación
  • Latypova L; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China.
  • Murzakhanov F; Zhengzhou Research Institute, Harbin Institute of Technology, 26 Intersection of Longyuan East 7th Street and Longhu Central North Road, Zhengdong New District, Zhengzhou 450046, China.
  • Mamin G; Institute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia.
  • Sadovnikova M; Institute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia.
  • von Bardeleben HJ; Institute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia.
  • Rau JV; Institut des Nanosciences de Paris, Campus Pierre et Marie Curie, Sorbonne Université, 4, Place Jussieu, 75005 Paris, France.
  • Gafurov M; Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, ISM-CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy.
Molecules ; 29(13)2024 Jun 26.
Article en En | MEDLINE | ID: mdl-38998983
ABSTRACT
High-spin defects (color centers) in wide-gap semiconductors are considered as a basis for the implementation of quantum technologies due to the unique combination of their spin, optical, charge, and coherent properties. A silicon carbide (SiC) crystal can act as a matrix for a wide variety of optically active vacancy-type defects, which manifest themselves as single-photon sources or spin qubits. Among the defects, the nitrogen-vacancy centers (NV) are of particular importance. This paper is devoted to the application of the photoinduced electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) techniques at a high-frequency range (94 GHz) to obtain unique information about the nature and properties of NV defects in SiC crystal of the hexagonal 4H and 6H polytypes. Selective excitation by microwave and radio frequency pulses makes it possible to determine the microscopic structure of the color center, the zero-field splitting constant (D = 1.2-1.3 GHz), the phase coherence time (T2), and the values of hyperfine (≈1.1 MHz) and quadrupole (Cq ≈ 2.45 MHz) interactions and to define the isotropic (a = -1.2 MHz) and anisotropic (b = 10-20 kHz) contributions of the electron-nuclear interaction. The obtained data are essential for the implementation of the NV defects in SiC as quantum registers, enabling the optical initialization of the electron spin to establish spin-photon interfaces. Moreover, the combination of optical, microwave, and radio frequency resonant effects on spin centers within a SiC crystal shows the potential for employing pulse EPR and ENDOR sequences to implement protocols for quantum computing algorithms and gates.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza