Your browser doesn't support javascript.
loading
Pressure-Dependent CO2 Electroreduction to Methane over Asymmetric Cu-N2 Single-Atom Sites.
Wu, Haoyang; Tian, Benqiang; Xu, Wenhai; Abdalla, Kovan K; Kuang, Yun; Li, Jiazhan; Sun, Xiaoming.
Afiliación
  • Wu H; State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
  • Tian B; State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
  • Xu W; State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
  • Abdalla KK; State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
  • Kuang Y; Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University, Shenzhen 518057, P. R. China.
  • Li J; State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
  • Sun X; State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
J Am Chem Soc ; 146(32): 22266-22275, 2024 Aug 14.
Article en En | MEDLINE | ID: mdl-38996381
ABSTRACT
Single-atom catalysts (SACs) with unitary active sites hold great promise for realizing high selectivity toward a single product in the CO2 electroreduction reaction (CO2RR). However, achieving high Faradaic efficiency (FE) of multielectron products like methane on SACs is still challenging. Herein, we report a pressure-regulating strategy that achieves 83.5 ± 4% FE for the CO2-to-CH4 conversion on the asymmetric Cu-N2 sites, representing one of the best CO2-to-CH4 performances. Elevated CO2 pressure was demonstrated as an efficient way to inhibit the hydrogen evolution reaction via promoting the competing adsorption of reactant CO2, regardless of the nature of the active sites. Meanwhile, the asymmetric Cu-N2 structure could endow the Cu sites with stronger electronic coupling with *CO, thus suppressing the desorption of *CO and facilitating the following hydrogenation of *CO to *CHO. This work provides a synergetic strategy of the pressure-induced reaction environment regulating and the electronic structure modulating for selective CO2RR toward targeted products.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos