Electrolyte-Gated Carbon Nanotube Field-Effect Transistor-Based Sensors for Nanoplastics Detection in Seawater: A Study of the Interaction between Nanoplastics and Carbon Nanotubes.
ACS Appl Mater Interfaces
; 16(29): 38768-38779, 2024 Jul 24.
Article
en En
| MEDLINE
| ID: mdl-38996179
ABSTRACT
Plastics accumulating in the environment are nowadays of great concern for aquatic systems and for the living organisms populating them. In this context, nanoplastics (NPs) are considered the major and most dangerous contaminants because of their small size and active surface, which allow them to interact with a variety of other molecules. Current methods used for the detection of NPs rely on bulky and expensive techniques such as spectroscopy. Here we propose, for the first time, a novel, fast, and easy-to-use sensor based on an electrolyte-gated field-effect transistor (EG-FET) with a carbon nanotube (CNT) semiconductor (EG-CNTFET) for the detection of NPs in aquatic environments, using polystyrene NPs (PS-NPs) as a model material. In particular, as a working mechanism for the EG-CNTFETs we exploited the ability of CNTs and PS to form noncovalent interactions. Indeed, in our EG-CNTFET devices, the interaction between NPs and CNTs caused a change in the electric double layers. A linear increase in the corrected on current (*ION) of the EG-CNTFETs, with a sensitivity of 9.68 µA/(1 mg/mL) and a linear range of detection from 0.025 to 0.25 mg/mL were observed. A π-π interaction was hypothesized to take place between the two materials, as indicated by an X-ray photoelectron spectroscopy analysis. Using artificial seawater as an electrolyte, to mimic a real-case scenario, a linear increase in *ION was also observed, with a sensitivity of 6.19 µA/(1 mg/mL), proving the possibility to use the developed sensor in more complex solutions, as well as in low concentrations. This study offers a starting point for future exploitation of electrochemical sensors for NP detection and identification.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2024
Tipo del documento:
Article
País de afiliación:
Italia
Pais de publicación:
Estados Unidos