Your browser doesn't support javascript.
loading
A wearable microneedle patch incorporating reversible FRET-based hydrogel sensors for continuous glucose monitoring.
Hu, Yubing; Pan, Zhisheng; De Bock, Marieke; Tan, Tai Xuan; Wang, Yuhuai; Shi, Yuqi; Yan, Neng; Yetisen, Ali K.
Afiliación
  • Hu Y; Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom. Electronic address: yubing.hu@imperial.ac.uk.
  • Pan Z; Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
  • De Bock M; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
  • Tan TX; Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
  • Wang Y; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
  • Shi Y; Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
  • Yan N; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
  • Yetisen AK; Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom. Electronic address: a.yetisen@imperial.ac.uk.
Biosens Bioelectron ; 262: 116542, 2024 Oct 15.
Article en En | MEDLINE | ID: mdl-38991372
ABSTRACT
Continuous glucose monitors are crucial for diabetes management, but invasive sampling, signal drift and frequent calibrations restrict their widespread usage. Microneedle sensors are emerging as a minimally-invasive platform for real-time monitoring of clinical parameters in interstitial fluid. Herein, a painless and flexible microneedle sensing patch is constructed by a mechanically-strong microneedle base and a thin layer of fluorescent hydrogel sensor for on-site, accurate, and continuous glucose monitoring. The Förster resonance energy transfer (FRET)-based hydrogel sensors are fabricated by facile photopolymerizations of acryloylated FRET pairs and glucose-specific phenylboronic acid. The optimized hydrogel sensor enables quantification of glucose with reversibility, high selectivity, and signal stability against photobleaching. Poly (ethylene glycol diacrylate)-co-polyacrylamide hydrogel is utilized as the microneedle base, facilitating effective skin piercing and biofluid extraction. The integrated microneedle sensor patch displays a sensitivity of 0.029 mM-1 in the (patho)physiological range, a low detection limit of 0.193 mM, and a response time of 7.7 min in human serum. Hypoglycemia, euglycemia and hyperglycemia are continuously monitored over 6 h simulated meal and rest activities in a porcine skin model. This microneedle sensor with high transdermal analytical performance offers a powerful tool for continuous diabetes monitoring at point-of-care settings.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Glucemia / Técnicas Biosensibles / Automonitorización de la Glucosa Sanguínea / Hidrogeles / Transferencia Resonante de Energía de Fluorescencia / Dispositivos Electrónicos Vestibles / Agujas Límite: Animals / Humans Idioma: En Revista: Biosens Bioelectron Asunto de la revista: BIOTECNOLOGIA Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Glucemia / Técnicas Biosensibles / Automonitorización de la Glucosa Sanguínea / Hidrogeles / Transferencia Resonante de Energía de Fluorescencia / Dispositivos Electrónicos Vestibles / Agujas Límite: Animals / Humans Idioma: En Revista: Biosens Bioelectron Asunto de la revista: BIOTECNOLOGIA Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido