Your browser doesn't support javascript.
loading
Research on high-speed classification and location algorithm for logistics parcels based on a monocular camera.
Lu, Zhehao; Dai, Ning; Hu, Xudong; Xu, Kaixin; Yuan, Yanhong.
Afiliación
  • Lu Z; Key Laboratory of Modern Textile Machinery&Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
  • Dai N; Key Laboratory of Modern Textile Machinery&Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China. zstudn@zstu.edu.cn.
  • Hu X; Key Laboratory of Modern Textile Machinery&Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
  • Xu K; Key Laboratory of Modern Textile Machinery&Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China. xukaixin701@gmail.com.
  • Yuan Y; Key Laboratory of Modern Textile Machinery&Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
Sci Rep ; 14(1): 15901, 2024 Jul 10.
Article en En | MEDLINE | ID: mdl-38987266
ABSTRACT
The rapid development of the logistics industry has driven innovations in parcel sorting technology, among which the swift and precise positioning and classification of parcels have become key to enhancing the performance of logistics systems. This study aims to address the limitations of traditional light curtain positioning methods in logistics sorting workshops amidst high-speed upgrades. This paper proposes a high-speed classification and location algorithm for logistics parcels utilizing a monocular camera. The algorithm combines traditional visual processing methods with an enhanced version of the lightweight YOLOv5 object detection algorithm, achieving high-speed, high-precision parcel positioning. Through the adjustment of the network structure and the incorporation of new feature extraction modules and ECIOU loss functions, the model's robustness and detection accuracy have been significantly improved. Experimental results demonstrate that this model exhibits outstanding performance on a customized logistics parcel dataset, notably enhancing the model's parameter efficiency and computational speed, thereby offering an effective solution for industrial applications in high-speed logistics supply.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido