Your browser doesn't support javascript.
loading
Design of Multivariate Biological Metal-Organic Frameworks: Toward Mimicking Active Sites of Enzymes.
Navarro-Alapont, Javier; Negro, Cristina; Navalón, Sergio; Dhakshinamoorthy, Amarajothi; Armentano, Donatella; Ferrando-Soria, Jesús; Pardo, Emilio.
Afiliación
  • Navarro-Alapont J; Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Paterna, Valencia, Spain.
  • Negro C; Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Paterna, Valencia, Spain.
  • Navalón S; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain.
  • Dhakshinamoorthy A; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain.
  • Armentano D; Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036 Cosenza, Italy.
  • Ferrando-Soria J; Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Paterna, Valencia, Spain.
  • Pardo E; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain.
Inorg Chem ; 63(29): 13681-13688, 2024 Jul 22.
Article en En | MEDLINE | ID: mdl-38982342
ABSTRACT
Mimicking enzymatic processes carried out by natural enzymes, which are highly efficient biocatalysts with key roles in living organisms, attracts much interest but constitutes a synthetic challenge. Biological metal-organic frameworks (bioMOFs) are potential candidates to be enzyme catalysis mimics, as they offer the possibility to combine biometals and biomolecules into open-framework porous structures capable of simulating the catalytic pockets of enzymes. In this work, we first study the catalase activity of a previously reported bioMOF, derived from the amino acid L-serine, with formula {CaIICuII6[(S,S)-serimox]3(OH)2(H2O)} · 39H2O (1) (serimox = bis[(S)-serine]oxalyl diamide), which is indeed capable to mimic catalase enzymes, in charge of preventing cell oxidative damage by decomposing, efficiently, hydrogen peroxide to water and oxygen (2H2O2 → 2 H2O + O2). With these results in hand, we then prepared a new multivariate bioMOF (MTV-bioMOF) that combines two different types of bioligands derived from L-serine and L-histidine amino acids with formula CaIICuII6[(S,S)-serimox]2[(S,S)-hismox]1(OH)2(H2O)}·27H2O (2) (hismox = bis[(S)-histidine]oxalyl diamide ligand). MTV-bioMOF 2 outperforms 1 degrading hydrogen peroxide, confirming the importance of the amino acid residue from the histidine amino acid acting as a nucleophile in the catalase degradation mechanism. Despite displaying a more modest catalytic behavior than other reported MOF composites, in which the catalase enzyme is immobilized inside the MOF, this work represents the first example of a MOF in which an attempt is made to replicate the active center of the catalase enzyme with its constituent elements and is capable of moderate catalytic activity.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Catalasa / Dominio Catalítico / Materiales Biomiméticos / Estructuras Metalorgánicas Idioma: En Revista: Inorg Chem Año: 2024 Tipo del documento: Article País de afiliación: España Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Catalasa / Dominio Catalítico / Materiales Biomiméticos / Estructuras Metalorgánicas Idioma: En Revista: Inorg Chem Año: 2024 Tipo del documento: Article País de afiliación: España Pais de publicación: Estados Unidos