Your browser doesn't support javascript.
loading
An Anti-Scaling Strategy for Electrochemical Wastewater Treatment: Leveraging Tip-Enhanced Electric Fields.
Zhu, Yihui; Duan, Weijian; Huang, Ziyuan; Tian, Li; Wu, Wenbo; Dang, Zhi; Feng, Chunhua.
Afiliación
  • Zhu Y; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China.
  • Duan W; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China.
  • Huang Z; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China.
  • Tian L; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China.
  • Wu W; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China.
  • Dang Z; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China.
  • Feng C; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China.
Environ Sci Technol ; 58(29): 13145-13156, 2024 Jul 23.
Article en En | MEDLINE | ID: mdl-38980824
ABSTRACT
Electrode scaling poses a critical barrier to the adoption of electrochemical processes in wastewater treatment, primarily due to electrode inactivation and increased internal reactor resistance. We introduce an antiscaling strategy using tip-enhanced electric fields to redirect scale-forming compounds (e.g., Mg(OH)2 and CaCO3) from the electrode-electrolyte interface to the bulk solution. Our study utilized Cu nanowires (Cu NW) with high-curvature nanostructures as the cathode, in contrast to Cu nanoparticles (Cu NP), Cu foil (CF), and Cu mesh (CM), to evaluate the electrochemical nitrate reduction reaction (NO3RR) performance in hard water conditions. The Cu NW/CF cathode demonstrated superior NO3RR efficiency, with an apparent rate constant (Kapp) of 1.04 h-1, significantly outperforming control electrodes under identical conditions (Kapp < 0.051 h-1). Through experimental and theoretical analysis, including COMSOL simulations, we show that the high-curvature design of Cu NW induced localized electric field enhancements, propelling OH- ions away from the electrode surface into the bulk solution, thus mitigating scale formation on the cathode. Testing with real nitrate-contaminated wastewater confirms that the Cu NW/CF cathode maintained excellent denitrification efficiency over a 60-day period. This study offers a promising perspective on preventing electrode scaling in electrochemical wastewater treatment, paving the way for more efficient and sustainable practices.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Electrodos / Aguas Residuales Idioma: En Revista: Environ Sci Technol Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Electrodos / Aguas Residuales Idioma: En Revista: Environ Sci Technol Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos