Bacterial motility depends on a critical flagellum length and energy-optimised assembly.
bioRxiv
; 2024 Jun 28.
Article
en En
| MEDLINE
| ID: mdl-38979141
ABSTRACT
The flagellum is the most complex macromolecular structure known in bacteria and comprised of around two dozen distinct proteins. The main building block of the long, external flagellar filament, flagellin, is secreted through the flagellar type-III secretion system at a remarkable rate of several tens of thousands amino acids per second, significantly surpassing the rates achieved by other pore-based protein secretion systems. The evolutionary implications and potential benefits of this high secretion rate for flagellum assembly and function, however, have remained elusive. In this study, we provide both experimental and theoretical evidence that the flagellar secretion rate has been evolutionarily optimized to facilitate rapid and efficient construction of a functional flagellum. By synchronizing flagellar assembly, we found that a minimal filament length of 2.5 µm was required for swimming motility. Biophysical modelling revealed that this minimal filament length threshold resulted from an elasto-hydrodynamic instability of the whole swimming cell, dependent on the filament length. Furthermore, we developed a stepwise filament labeling method combined with electron microscopy visualization to validate predicted flagellin secretion rates of up to 10,000 amino acids per second. A biophysical model of flagellum growth demonstrates that the observed high flagellin secretion rate efficiently balances filament elongation and energy consumption, thereby enabling motility in the shortest amount of time. Taken together, these insights underscore the evolutionary pressures that have shaped the development and optimization of the flagellum and type-III secretion system, illuminating the intricate interplay between functionality and efficiency in assembly of large macromolecular structures. Significance statement Our study demonstrates how protein secretion of the bacterial flagellum is finely tuned to optimize filament assembly rate and flagellum function while minimizing energy consumption. By measuring flagellar filament lengths and bacterial swimming after initiation of flag-ellum assembly, we were able to establish the minimal filament length necessary for swimming motility, which we rationalized physically as resulting from an elasto-hydrodynamic instability of the swimming cell. Our bio-physical model of flagellum growth further illustrates how the physiological flagellin secretion rate is optimized to maximize filament elongation while conserving energy. These findings illuminate the evolutionary pressures that have shaped the function of the bacterial flagellum and type-III secretion system, driving improvements in bacterial motility and overall fitness.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
BioRxiv
Año:
2024
Tipo del documento:
Article
Pais de publicación:
Estados Unidos