Chemogenetic Evolution of Diversified Photoenzymes for Enantioselective [2 + 2] Cycloadditions in Whole Cells.
J Am Chem Soc
; 146(28): 19030-19041, 2024 Jul 17.
Article
en En
| MEDLINE
| ID: mdl-38976645
ABSTRACT
Artificial photoenzymes with novel catalytic modes not found in nature are in high demand; yet, they also present significant challenges in the field of biocatalysis. In this study, a chemogenetic modification strategy is developed to facilitate the rapid diversification of photoenzymes. This strategy integrates site-specific chemical conjugation of various artificial photosensitizers into natural protein cavities and the iterative mutagenesis in cell lysates. Through rounds of directed evolution, prominent visible-light-activatable photoenzyme variants were developed, featuring a thioxanthone chromophore. They successfully enabled the enantioselective [2 + 2] photocycloaddition of 2-carboxamide indoles, a class of UV-sensitive substrates that are traditionally challenging for known photoenzymes. Furthermore, the versatility of this photoenzyme is demonstrated in enantioselective whole-cell photobiocatalysis, enabling the efficient synthesis of enantioenriched cyclobutane-fused indoline tetracycles. These findings significantly expand the photophysical properties of artificial photoenzymes, a critical factor in enhancing their potential for harnessing excited-state reactivity in stereoselective transformations.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Reacción de Cicloadición
Idioma:
En
Revista:
J Am Chem Soc
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos