Your browser doesn't support javascript.
loading
Temperatures and hypolimnetic oxygen in German lakes: Observations, future trends and adaptation potential.
Schwefel, Robert; Nkwalale, Lipa G T; Jordan, Sylvia; Rinke, Karsten; Hupfer, Michael.
Afiliación
  • Schwefel R; Department of Ecohydrology and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587, Berlin, Germany. robert.schwefel@igb-berlin.de.
  • Nkwalale LGT; Department of Lake Research, Helmholtz Centre for Environmental Research - UFZ, Brückstr. 3a, 39114, Magdeburg, Germany.
  • Jordan S; Department of Ecohydrology and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587, Berlin, Germany.
  • Rinke K; Department of Lake Research, Helmholtz Centre for Environmental Research - UFZ, Brückstr. 3a, 39114, Magdeburg, Germany.
  • Hupfer M; Department of Ecohydrology and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587, Berlin, Germany.
Ambio ; 2024 Jul 05.
Article en En | MEDLINE | ID: mdl-38967897
ABSTRACT
We investigated trends in temperature, stratification, and hypolimnetic oxygen concentration of German lakes under climate change using observational data and hydrodynamic modelling. Observations from 46 lakes revealed that annually averaged surface temperatures increased by + 0.5 °C between 1990 and 2020 while bottom temperatures remained almost constant. Modelling of 12 lakes predicted further increases in surface temperatures by 0.3 °C/decade until the year 2099 in the most pessimistic emission scenario RCP 8.5 (RCP 4.5 + 0.18 °C/decade; RCP 2.6 + 0.04 °C/decade). Again, bottom temperatures increased much less while summer stratification extended by up to 38 days. Using a simplified oxygen model, we showed that hypolimnetic oxygen concentrations decreased by 0.7-1.9 mg L-1 in response to the extended stratification period. However, model runs assuming lower productivity (e. g. through nutrient reduction) resulted in increased oxygen concentrations even in the most pessimistic emission scenario. Our results suggest that the negative effects of climate change on the oxygen budget of lakes can be efficiently mitigated by nutrient control.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Ambio Año: 2024 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Suecia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Ambio Año: 2024 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Suecia