Your browser doesn't support javascript.
loading
Using a nonparametric item response theory model to identify patterns of cognitive decline: The Mokken scale analysis.
Calderón, Carlos; Palominos, Diego; Véliz-García, Óscar; Ramos-Henderson, Miguel; Bekios-Canales, Nikolás; Beyle, Christian; Ávalos-Tejeda, Marcelo; Domic-Siede, Marcos.
Afiliación
  • Calderón C; Escuela de Psicología, Facultad de Humanidades, Universidad Católica del Norte, Antofagasta, Chile.
  • Palominos D; Escuela de Psicología, Facultad de Humanidades, Universidad Católica del Norte, Antofagasta, Chile.
  • Véliz-García Ó; Escuela de Psicología, Facultad de Humanidades, Universidad Católica del Norte, Antofagasta, Chile.
  • Ramos-Henderson M; Escuela de Psicología, Facultad de Humanidades, Universidad Católica del Norte, Antofagasta, Chile.
  • Bekios-Canales N; Centro de Investigación e Innovación en Gerontología Aplicada CIGAP, Facultad de Salud, Universidad Santo Tomás, Antofagasta, Chile.
  • Beyle C; Escuela de Psicología, Facultad de Humanidades, Universidad Católica del Norte, Antofagasta, Chile.
  • Ávalos-Tejeda M; Departamento de Psicología, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco, Chile.
  • Domic-Siede M; Escuela de Psicología, Facultad de Humanidades, Universidad Católica del Norte, Antofagasta, Chile.
J Neuropsychol ; 2024 Jun 27.
Article en En | MEDLINE | ID: mdl-38934236
ABSTRACT
Cognitive decline, particularly in dementia, presents complex challenges in early detection and diagnosis. While Item Response Theory (IRT) has been instrumental in identifying patterns of cognitive impairment through psychometric tests, its parametric models often require large sample sizes and strict assumptions. This creates a need for more adaptable, less demanding analytical methods. This study aimed to evaluate the effectiveness of Mokken scale analysis (MSA), a nonparametric IRT model, in identifying hierarchical patterns of cognitive impairment from psychometric tests. Using data from 1164 adults over 60 years old, we applied MSA to the orientation subscale of ACE-III. Our analysis involved calculating scalability, monotone homogeneity, invariant item ordering (IIO) and response functions. The MSA effectively retrieved the hierarchical order of cognitive impairment patterns. Most items showed strong scalability and consistent patterns of cognitive performance. However, challenges with IIO were observed, particularly with items having adjacent difficulty parameters. The findings highlight MSA's potential as a practical alternative to parametric IRT models in cognitive impairment research. Its ability to provide valuable insights into patterns of cognitive deterioration, coupled with less stringent requirements, makes it a useful tool for clinicians and researchers.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Neuropsychol Asunto de la revista: NEUROLOGIA / PSICOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Chile Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Neuropsychol Asunto de la revista: NEUROLOGIA / PSICOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Chile Pais de publicación: Reino Unido