Your browser doesn't support javascript.
loading
Molecular weight-dependent differences in spectral properties and metal-binding behaviors of dissolved organic matter from different lakes.
Yang, Keli; Zhang, Yaoling; Peng, Jiaoyu; Xu, Huacheng; Liu, Xin; Liu, Haining; Li, Ning; Guo, Laodong; Li, Wu.
Afiliación
  • Yang K; Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China; Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Xining, China. Electronic address: yangkl@isl.
  • Zhang Y; Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China; Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Xining, China.
  • Peng J; Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China; Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Xining, China.
  • Xu H; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China. Electronic address: hcxu@niglas.ac.cn.
  • Liu X; Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China; Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Xining, China.
  • Liu H; Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China; Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Xining, China.
  • Li N; Qinghai Vocational Technical University, Xining, China.
  • Guo L; School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, USA.
  • Li W; Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China; Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Xining, China.
Sci Total Environ ; 946: 174245, 2024 Oct 10.
Article en En | MEDLINE | ID: mdl-38925395
ABSTRACT
Dissolved organic matter (DOM) plays an important role in governing metal speciation and migration in aquatic systems. In this study, various DOM samples were collected from Lakes Erhai, Kokonor, and Chaka, and size-fractionated into high molecular weight (HMW, 1 kDa-0.7 µm) and low molecular weight (LMW, <1 kDa) fractions for measurements of dissolved organic carbon (DOC), spectral properties, and metal binding behaviors. Our results demonstrated that samples from Lake Chaka exhibited the highest DOC concentration and fluorescence indices but the lowest percentage of carbohydrates. Regardless of sampling locations, the HMW-DOM fractions contained higher abundances of aromatic DOM, carbohydrates and protein-like substances, but lower abundance of fulvic acid-like substances compared to those in the LMW fractions. Metal titration experiments coupled with the excitation-emission matrix (EEM)-parallel factor (PARAFAC) modeling revealed that the quenching of the PARAFAC-derived fluorescent components was more pronounced in the presence of Cu(II) compared to Pb(II). Humic-like components emerged as a superior model, exhibiting higher binding affinities for Cu(II) than protein-like substances, while the opposite trend was observed for Pb(II). In samples obtained from Lakes Erhai and Kokonor, the condition stability constants (Log KM) for the binding of both Cu(II) and Pb(II) with the HMW-DOM fraction were higher than those with the LMW-DOM fraction. Conversely, a contrasting trend was observed for Lake Chaka. This study highlighted the heterogeneity in spectral properties and metal-binding behaviors of natural DOMs, contributing to an improved understanding of the molecular interactions between DOM components and metal ions and their environmental fate in aquatic ecosystems.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos