Your browser doesn't support javascript.
loading
Delivery of exogenous miR-19b by Wharton's Jelly Mesenchymal Stem Cells attenuates transplanted kidney ischemia/reperfusion injury by regulating cellular metabolism.
Wu, Xiaoqiang; Wu, Xuan; Wang, Zhiwei; Tian, Xiangyong; Zhang, Chan; Cao, Guanghui; Gu, Yue; Yan, Tianzhong.
Afiliación
  • Wu X; Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China.
  • Wu X; Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China.
  • Wang Z; Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China.
  • Tian X; Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China.
  • Zhang C; Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China.
  • Cao G; Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China.
  • Gu Y; Department of Nephrology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China.
  • Yan T; Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, China. ytz460@hotmail.com.
Article en En | MEDLINE | ID: mdl-38918324
ABSTRACT
Renal ischemia-reperfusion injury (IRI) frequently occurs following kidney transplantation, and exosomes derived from umbilical cord mesenchymal stem cells (WJ-MSC-Exos) have shown promise in treating IRI in transplanted kidneys. Our study delved into the potential mechanism of WJ-MSC-Exos in ameliorating IRI in transplanted kidneys, revealing that miR-19b is abundantly present in WJ-MSC-Exos. Both in vivo and in vitro experiments demonstrated that the absence of miR-19b abolished the protective effects of WJ-MSC-Exos against renal IRI. Mechanistically, miR-19b suppressed glycogen synthase kinase-3ß (GSK3ß) expression, thereby stabilizing PDXK protein through direct binding. Treatment with WJ-MSC-Exos led to reduced PDXK levels and enhanced pyridoxine accumulation, ultimately mitigating IRI in transplanted kidneys and I/R-induced HK2 cell apoptosis. These findings elucidate the underlying mechanism of WJ-MSC-Exos in alleviating IRI in transplanted kidneys, unveiling novel therapeutic targets for post-kidney transplantation IRI and providing a solid theoretical foundation for the clinical application of WJ-MSC-Exos in IRI treatment post-transplantation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Drug Deliv Transl Res Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Drug Deliv Transl Res Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos