Understanding mechanisms of JAK1 inhibition on synovial fibroblasts using combinatorial approaches of bulk and single cell RNAseq analyses.
Clin Exp Rheumatol
; 42(11): 2194-2205, 2024 Nov.
Article
en En
| MEDLINE
| ID: mdl-38910570
ABSTRACT
OBJECTIVES:
The aim of these studies was to characterise the molecular effects of a tool JAK1 inhibitor on cultured primary fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) through both total and individual cell analysis.METHODS:
RA-FLS cultures from 6 (Bulk RNA-seq) or 4 (ScRNA-seq) donors were pre-treated with various concentrations (100 nM and 1µM) of ABT-317 with/without exposure to 25% SEB-conditioned PBMC medium to mimic the RA inflammatory milieu. Cells were subjected to both bulk RNA-seq (36 libraries) and single cell RNA-seq (scRNA-seq; 24 libraries) to identify biological processes impacted by CM and ABT-317 treatments.RESULTS:
In our bulk RNA-seq analysis, a total of 2,605 differentially expressed genes (DEGs) were identified between CM-stimulation and unstimulated groups, while 1,122 DEGs were found between ABT-317 1µM and DMSO in CM-stimulated groups using thresholds of log2 (fold change) ≥ |0.58| and FDR ≤ 10%. Both bulk and single cell mRNA analysis of RA-FLS treated with a combination of CM and ABT-317 demonstrated the expected changes in inflammatory pathways such as interferon and IL-6 signalling. However, other non-inflammation associated pathways were also altered by ABT-317. In addition, the single cell analysis highlighted that FLS segregate into distinctive clusters upon combination CM and ABT-317 treatment, suggesting JAK inhibition can drive RA-FLS into multiple heterogenous cell populations. Interestingly, one of the unique RA-FLS clusters that emerged from the CM and ABT-317 treatment showed matrix metalloproteinase-3 (MMP3)high expression as well as several gene signatures that are not found in any other ABT-317 derived clusters.CONCLUSIONS:
JAK inhibition with ABT-317 is effective at globally inhibiting CM-induced pro- and non-inflammatory pathways in FLS cultures, but also results in several distinct fibroblast populations with unique gene-associated pathways. This study advances the molecular understanding of JAK1 inhibitor effects on fibroblasts that may contribute to clinical efficacy.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Artritis Reumatoide
/
Membrana Sinovial
/
Janus Quinasa 1
/
Análisis de la Célula Individual
/
Fibroblastos
/
Sinoviocitos
/
RNA-Seq
Límite:
Humans
Idioma:
En
Revista:
Clin Exp Rheumatol
Año:
2024
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Italia