DeepHLApan: A Deep Learning Approach for the Prediction of Peptide-HLA Binding and Immunogenicity.
Methods Mol Biol
; 2809: 237-244, 2024.
Article
en En
| MEDLINE
| ID: mdl-38907901
ABSTRACT
Neoantigens are crucial in distinguishing cancer cells from normal ones and play a significant role in cancer immunotherapy. The field of bioinformatics prediction for tumor neoantigens has rapidly developed, focusing on the prediction of peptide-HLA binding affinity. In this chapter, we introduce a user-friendly tool named DeepHLApan, which utilizes deep learning techniques to predict neoantigens by considering both peptide-HLA binding affinity and immunogenicity. We provide the application of DeepHLApan, along with the source code, docker version, and web-server. These resources are freely available at https//github.com/zjupgx/deephlapan and http//pgx.zju.edu.cn/deephlapan/ .
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Péptidos
/
Programas Informáticos
/
Biología Computacional
/
Aprendizaje Profundo
/
Antígenos HLA
Límite:
Humans
Idioma:
En
Revista:
Methods Mol Biol
Asunto de la revista:
BIOLOGIA MOLECULAR
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos