Your browser doesn't support javascript.
loading
BTXs removals by modified clay during mitigation of Karenia brevis bloom: Insights from adsorption and transformation.
Chi, Lianbao; Shen, Huihui; Jiang, Kaiqin; Cao, Xihua; Song, Xiuxian; Yu, Zhiming.
Afiliación
  • Chi L; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China.
  • Shen H; Qingdao Technical College, Qingdao, 266555, China.
  • Jiang K; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Techno
  • Cao X; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266200, China.
  • Song X; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Techno
  • Yu Z; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Techno
Chemosphere ; 362: 142668, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38906188
ABSTRACT
Harmful algal blooms (HABs), especially those caused by toxic dinoflagellates, are spreading in marine ecosystems worldwide. Notably, the prevalence of Karenia brevis blooms and potent brevetoxins (BTXs) pose a serious risk to public health and marine ecosystems. Therefore, developing an environmentally friendly method to effectively control HABs and associated BTXs has been the focus of increasing attention. As a promising method, modified clay (MC) application could effectively control HABs. However, the environmental fate of BTXs during MC treatment has not been fully investigated. For the first time, this study revealed the effect and mechanism of BTX removal by MC from the perspective of adsorption and transformation. The results indicated that polyaluminium chloride-modified clay (PAC-MC, a typical kind of MC) performed well in the adsorption of BTX2 due to the elevated surface potential and more binding sites. The adsorption process was a spontaneous endothermic process that conformed to pseudo-second-order adsorption kinetics (k2 = 6.8 × 10-4, PAC-MC = 0.20 g L-1) and the Freundlich isotherm (Kf = 55.30, 20 °C). In addition, detailed product analysis using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) indicated that PAC-MC treatment effectively removed the BTX2 and BTX3, especially those in the particulate forms. Surprisingly, PAC-MC could promote the transformation of BTX2 to derivatives, including OR-BTX2, OR-BTX3, and OR-BTX-B5, which were proven to have lower cytotoxicity.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Dinoflagelados / Arcilla / Floraciones de Algas Nocivas / Toxinas Marinas Idioma: En Revista: Chemosphere Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Dinoflagelados / Arcilla / Floraciones de Algas Nocivas / Toxinas Marinas Idioma: En Revista: Chemosphere Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido