Your browser doesn't support javascript.
loading
Unveiling biotransformation of free flavonoids into phenolic acids and Chromones alongside dynamic migration of bound Phenolics in Lactobacillus-fermented lychee pulp.
Huang, Guitao; Zhang, Mingwei; Zhang, Shuai; Wang, Jidongtian; Zhang, Ruifen; Dong, Lihong; Huang, Fei; Su, Dongxiao; Deng, Mei.
Afiliación
  • Huang G; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agric
  • Zhang M; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agric
  • Zhang S; Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
  • Wang J; Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
  • Zhang R; Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
  • Dong L; Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
  • Huang F; Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
  • Su D; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China. Electronic address: dongxsu@126.com.
  • Deng M; Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China. Electronic address: monaelegant@foxmail.c
Food Chem ; 457: 140115, 2024 Nov 01.
Article en En | MEDLINE | ID: mdl-38905839
ABSTRACT
Lactobacillus strains have emerged as promising probiotics for enhancing the bioactivities of plant-based foods associated with flavonoid biotransformation. Employing microbial fermentation and mass spectrometry, we explored flavonoid metabolism in lychee pulp fermented separately by Lactiplantibacillus plantarum and Limosilactobacillus fermentum. Two novel metabolites, 3,5,7-trihydroxychromone and catechol, were exclusively identified in L. plantarum-fermented pulp. Concomitant with consumption of catechin and quercetin glycosides, dihydroquercetin glycosides, 2,4-dihydroxybenzoic acid and p-hydroxyphenyllactic acid were synthesized by two strains through hydrogenation and fission of C-ring. Quantitative analysis revealed that bound phenolics were primarily located in water-insoluble polysaccharides in lychee pulp. Quercetin 3-O-rutinoside was partially liberated from water-insoluble polysaccharides and migrated to water-soluble polysaccharides during fermentation. Meanwhile, substantial accumulations in short-chain fatty acids (increased 1.45 to 3.08-fold) and viable strains (increased by 1.97 to 2.00 Log10 CFU/mL) were observed in fermentative pulp. These findings provide broader insight into microbial biotransformation of phenolics and possible guidance for personalized nutrition.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Flavonoides / Biotransformación / Fermentación / Hidroxibenzoatos Idioma: En Revista: Food Chem Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Flavonoides / Biotransformación / Fermentación / Hidroxibenzoatos Idioma: En Revista: Food Chem Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido