Your browser doesn't support javascript.
loading
Multifractality approach of a generalized Shannon index in financial time series.
Abril-Bermúdez, Felipe S; Trinidad-Segovia, Juan E; Sánchez-Granero, Miguel A; Quimbay-Herrera, Carlos J.
Afiliación
  • Abril-Bermúdez FS; Department of Physics, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
  • Trinidad-Segovia JE; Department of Economics and Business, Universidad de Almería, Almeria, Spain.
  • Sánchez-Granero MA; Department of Mathematics, Universidad de Almería, Almeria, Spain.
  • Quimbay-Herrera CJ; Department of Physics, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
PLoS One ; 19(6): e0303252, 2024.
Article en En | MEDLINE | ID: mdl-38905275
ABSTRACT
Multifractality is a concept that extends locally the usual ideas of fractality in a system. Nevertheless, the multifractal approaches used lack a multifractal dimension tied to an entropy index like the Shannon index. This paper introduces a generalized Shannon index (GSI) and demonstrates its application in understanding system fluctuations. To this end, traditional multifractality approaches are explained. Then, using the temporal Theil scaling and the diffusive trajectory algorithm, the GSI and its partition function are defined. Next, the multifractal exponent of the GSI is derived from the partition function, establishing a connection between the temporal Theil scaling exponent and the generalized Hurst exponent. Finally, this relationship is verified in a fractional Brownian motion and applied to financial time series. In fact, this leads us to proposing an approximation called local fractional Brownian motion approximation, where multifractal systems are viewed as a local superposition of distinct fractional Brownian motions with varying monofractal exponents. Also, we furnish an algorithm for identifying the optimal q-th moment of the probability distribution associated with an empirical time series to enhance the accuracy of generalized Hurst exponent estimation.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Fractales Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2024 Tipo del documento: Article País de afiliación: Colombia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Fractales Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2024 Tipo del documento: Article País de afiliación: Colombia Pais de publicación: Estados Unidos