Your browser doesn't support javascript.
loading
UKSSL: Underlying Knowledge Based Semi-Supervised Learning for Medical Image Classification.
Ren, Zeyu; Kong, Xiangyu; Zhang, Yudong; Wang, Shuihua.
Afiliación
  • Ren Z; University of Leicester LE1 7RH Leicester U.K.
  • Kong X; University of Leicester LE1 7RH Leicester U.K.
  • Zhang Y; University of Leicester LE1 7RH Leicester U.K.
  • Wang S; University of Leicester LE1 7RH Leicester U.K.
IEEE Open J Eng Med Biol ; 5: 459-466, 2024.
Article en En | MEDLINE | ID: mdl-38899016
ABSTRACT
Goal Deep learning techniques have made significant progress in medical image analysis. However, obtaining ground truth labels for unlabeled medical images is challenging as they often outnumber labeled images. Thus, training a high-performance model with limited labeled data has become a crucial challenge.

Methods:

This study introduces an underlying knowledge-based semi-supervised framework called UKSSL, consisting of two components MedCLR extracts feature representations from the unlabeled dataset; UKMLP utilizes the representation and fine-tunes it with the limited labeled dataset to classify the medical images.

Results:

UKSSL evaluates on the LC25000 and BCCD datasets, using only 50% labeled data. It gets precision, recall, F1-score, and accuracy of 98.9% on LC25000 and 94.3%, 94.5%, 94.3%, and 94.1% on BCCD, respectively. These results outperform other supervised-learning methods using 100% labeled data.

Conclusions:

The UKSSL can efficiently extract underlying knowledge from the unlabeled dataset and perform better using limited labeled medical images.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IEEE Open J Eng Med Biol Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IEEE Open J Eng Med Biol Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos