Your browser doesn't support javascript.
loading
Enzymatic Dissociation of DNA-Histone Condensates in an Electrophoretic Setting: Modulating DNA Patterning and Hydrogel Viscoelasticity.
Sivoria, Neetu; Mahato, Rishi Ram; Saini, Aman; Maiti, Subhabrata.
Afiliación
  • Sivoria N; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India.
  • Mahato RR; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India.
  • Priyanka; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India.
  • Saini A; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India.
  • Maiti S; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India.
Langmuir ; 40(26): 13505-13514, 2024 Jul 02.
Article en En | MEDLINE | ID: mdl-38896798
ABSTRACT
Development of an energy-driven self-assembly process is a matter of interest for understanding and mimicking diverse ranges of biological and environmental patterns in a synthetic system. In this article, first we demonstrate transient and temporally controlled self-assembly of a DNA-histone condensate where trypsin (already present in the system) hydrolyzes histone, resulting in disassembly. Upon performing this dynamic self-assembly process in a gel matrix under an electric field, we observe diverse kinds of DNA patterning across the gel matrix depending on the amount of trypsin, incubation time of the reaction mixture, and gel porosity. Notably, here, the micrometer-sized DNA-histone condensate does not move through the gel and only free DNA can pass; therefore, transport and accumulation of DNA at different zones depend on the release rate of DNA by trypsin. Furthermore, we show that the viscoelasticity of the native gel increases in the presence of DNA and a pattern over gel viscoelasticity at different zones can be achieved by tuning the amount of enzyme, i.e., the dissociation rate of the DNA-histone condensate. We believe enabling spatiotemporally controlled DNA patterning by applying an electric field will be potentially important in designing different kinds of spatiotemporally distinct dynamic materials.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ADN / Histonas / Tripsina / Hidrogeles / Elasticidad Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ADN / Histonas / Tripsina / Hidrogeles / Elasticidad Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos