Your browser doesn't support javascript.
loading
Optimal Control of Collective Electrotaxis in Epithelial Monolayers.
Martina-Perez, Simon F; Breinyn, Isaac B; Cohen, Daniel J; Baker, Ruth E.
Afiliación
  • Martina-Perez SF; Mathematical Institute, University of Oxford, Oxford, UK. martinaperez@maths.ox.ac.uk.
  • Breinyn IB; Department of Quantitative and Computational Biology, Princeton University, Princeton, NJ, USA.
  • Cohen DJ; Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA.
  • Baker RE; Mathematical Institute, University of Oxford, Oxford, UK.
Bull Math Biol ; 86(8): 95, 2024 Jun 19.
Article en En | MEDLINE | ID: mdl-38896328
ABSTRACT
Epithelial monolayers are some of the best-studied models for collective cell migration due to their abundance in multicellular systems and their tractability. Experimentally, the collective migration of epithelial monolayers can be robustly steered e.g. using electric fields, via a process termed electrotaxis. Theoretically, however, the question of how to design an electric field to achieve a desired spatiotemporal movement pattern is underexplored. In this work, we construct and calibrate an ordinary differential equation model to predict the average velocity of the centre of mass of a cellular monolayer in response to stimulation with an electric field. We use this model, in conjunction with optimal control theory, to derive physically realistic optimal electric field designs to achieve a variety of aims, including maximising the total distance travelled by the monolayer, maximising the monolayer velocity, and keeping the monolayer velocity constant during stimulation. Together, this work is the first to present a unified framework for optimal control of collective monolayer electrotaxis and provides a blueprint to optimally steer collective migration using other external cues.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Movimiento Celular / Células Epiteliales / Conceptos Matemáticos / Modelos Biológicos Límite: Animals / Humans Idioma: En Revista: Bull Math Biol Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Movimiento Celular / Células Epiteliales / Conceptos Matemáticos / Modelos Biológicos Límite: Animals / Humans Idioma: En Revista: Bull Math Biol Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido Pais de publicación: Estados Unidos