Your browser doesn't support javascript.
loading
Atomic order of rare earth ions in a complex oxide: a path to magnetotaxial anisotropy.
Kaczmarek, Allison C; Rosenberg, Ethan R; Song, Yixuan; Ye, Kevin; Winter, Gavin A; Penn, Aubrey N; Gomez-Bombarelli, Rafael; Beach, Geoffrey S D; Ross, Caroline A.
Afiliación
  • Kaczmarek AC; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. kacz@mit.edu.
  • Rosenberg ER; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
  • Song Y; Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
  • Ye K; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
  • Winter GA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
  • Penn AN; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
  • Gomez-Bombarelli R; MIT.nano, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
  • Beach GSD; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
  • Ross CA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Nat Commun ; 15(1): 5083, 2024 Jun 14.
Article en En | MEDLINE | ID: mdl-38877043
ABSTRACT
Complex oxides offer rich magnetic and electronic behavior intimately tied to the composition and arrangement of cations within the structure. Rare earth iron garnet films exhibit an anisotropy along the growth direction which has long been theorized to originate from the ordering of different cations on the same crystallographic site. Here, we directly demonstrate the three-dimensional ordering of rare earth ions in pulsed laser deposited (EuxTm1-x)3Fe5O12 garnet thin films using both atomically-resolved elemental mapping to visualize cation ordering and X-ray diffraction to detect the resulting order superlattice reflection. We quantify the resulting ordering-induced 'magnetotaxial' anisotropy as a function of EuTm ratio using transport measurements, showing an overwhelmingly dominant contribution from magnetotaxial anisotropy that reaches 30 kJ m-3 for garnets with x = 0.5. Control of cation ordering on inequivalent sites provides a strategy to control matter on the atomic level and to engineer the magnetic properties of complex oxides.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido