Evaluation of Neoadjuvant Chemoradiotherapy Response in Rectal Cancer Using MR Images and Deep Learning Neural Networks.
Curr Med Imaging
; 20: e15734056309748, 2024.
Article
en En
| MEDLINE
| ID: mdl-38874041
ABSTRACT
INTRODUCTION:
The aim of the study was to develop deep-learning neural networks to guide treatment decisions and for the accurate evaluation of tumor response to neoadjuvant chemoradiotherapy (nCRT) in rectal cancer using magnetic resonance (MR) images.METHODS:
Fifty-nine tumors with stage 2 or 3 rectal cancer that received nCRT were retrospectively evaluated. Pathological tumor regression grading was carried out using the Dworak (Dw-TRG) guidelines and served as the ground truth for response predictions. Imaging-based tumor regression grading was performed according to the MERCURY group guidelines from pre-treatment and post-treatment para-axial T2-weighted MR images (MR-TRG). Tumor signal intensity signatures were extracted by segmenting the tumors volumetrically on the images. Normalized histograms of the signatures were used as input to a deep neural network (DNN) housing long short-term memory (LSTM) units. The output of the network was the tumor regression grading prediction, DNN-TRG.RESULTS:
In predicting complete or good response, DNN-TRG demonstrated modest agreement with Dw-TRG (Cohen's kappa= 0.79) and achieved 84.6% sensitivity, 93.9% specificity, and 89.8% accuracy. MR-TRG revealed 46.2% sensitivity, 100% specificity, and 76.3% accuracy. In predicting a complete response, DNN-TRG showed slight agreement with Dw-TRG (Cohen's kappa= 0.75) with 71.4% sensitivity, 97.8% specificity, and 91.5% accuracy. MR-TRG provided 42.9% sensitivity, 100% specificity, and 86.4% accuracy. DNN-TRG benefited from higher sensitivity but lower specificity, leading to higher accuracy than MR-TRG in predicting tumor response.CONCLUSION:
The use of deep LSTM neural networks is a promising approach for evaluating the tumor response to nCRT in rectal cancer.Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Neoplasias del Recto
/
Imagen por Resonancia Magnética
/
Redes Neurales de la Computación
/
Terapia Neoadyuvante
/
Aprendizaje Profundo
Límite:
Adult
/
Aged
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
Curr Med Imaging
Año:
2024
Tipo del documento:
Article
País de afiliación:
Turquía
Pais de publicación:
Emiratos Árabes Unidos