Your browser doesn't support javascript.
loading
Predicting long-term trends in physical properties from short-term molecular dynamics simulations using long short-term memory.
Noda, Kota; Shibuta, Yasushi.
Afiliación
  • Noda K; Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
  • Shibuta Y; Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
J Phys Condens Matter ; 36(38)2024 Jun 25.
Article en En | MEDLINE | ID: mdl-38870994
ABSTRACT
This study proposes a novel long short-term memory (LSTM)-based model for predicting future physical properties based on partial data of molecular dynamics (MD) simulation. It extracts latent vectors from atomic coordinates of MD simulations using graph convolutional network, utilizes LSTM to learn temporal trends in latent vectors and make one-step-ahead predictions of physical properties through fully connected layers. Validating with MD simulations of Ni solid-liquid systems, the model achieved accurate one-step-ahead prediction for time variation of the potential energy during solidification and melting processes using residual connections. Recursive use of predicted values enabled long-term prediction from just the first 20 snapshots of the MD simulation. The prediction has captured the feature of potential energy bending at low temperatures, which represents completion of solidification, despite that the MD data in short time do not have such a bending characteristic. Remarkably, for long-time prediction over 900 ps, the computation time was reduced to 1/700th of a full MD simulation of the same duration. This approach has shown the potential to significantly reduce computational cost for prediction of physical properties by efficiently utilizing the data of MD simulation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Condens Matter Asunto de la revista: BIOFISICA Año: 2024 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Condens Matter Asunto de la revista: BIOFISICA Año: 2024 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Reino Unido