Your browser doesn't support javascript.
loading
In situ forming an injectable hyaluronic acid hydrogel for drug delivery and synergistic tumor therapy.
Fan, Sisi; Liu, Qinghuan; Dong, Jia; Ai, Xiaorui; Li, Jing; Huang, Wei; Sun, Taolei.
Afiliación
  • Fan S; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China.
  • Liu Q; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
  • Dong J; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China.
  • Ai X; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
  • Li J; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China.
  • Huang W; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
  • Sun T; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China.
Heliyon ; 10(11): e32135, 2024 Jun 15.
Article en En | MEDLINE | ID: mdl-38867981
ABSTRACT
Stimulus-responsive injectable hydrogel has the key characteristics of in situ drug-loading ability and the controlled drug release, enabling efficient delivery and precise release of chemotherapy drugs at the tumor site, thereby being used as a local drug delivery system for sustained tumor treatment. This article designed a smart responsive injectable hydrogel loaded with anti-tumor drugs and nanoparticles to achieve efficient and specific synergistic treatment of tumors. Hyaluronic acid (HA) hydrogel obtained by cross-linking HA-SH (HS) and HA-Tyr (HT) through horseradish peroxidase (HRP), and doxorubicin hydrochloride (DOX) and folic acid-polyethylene glycol-amine (FA-PEG-NH2) modified PDA (denoted as PPF) were encapsulated to construct the HS/HT@PPF/D hydrogel. The hydrogel had good biocompatibility, injectability, and could respond to multiple stimuli at the tumor site, thereby achieving controlled drug release. At the same time, PPF gave it excellent photothermal efficiency, photothermal stability and tumor targeting. In vitro and in vivo experimental results showed that the HS/HT@PPF/D hydrogel combined with near-infrared laser irradiation could significantly improve its anti-tumor effect and could almost eliminate the entire tumor mass without obvious adverse reactions. The HS/HT@PPF/D hydrogel could achieve multi-stimulus-responsive drug delivery and be used for precise chemo-photothermal synergistic tumor treatment, thus providing a new platform for local synergistic tumor treatment.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Heliyon Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Heliyon Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido