Your browser doesn't support javascript.
loading
Resting state neurophysiology of agonist-antagonist myoneural interface in persons with transtibial amputation.
Chicos, Laura A; Rangaprakash, D; Srinivasan, Shriya S; Gutierrez-Arango, Samantha; Song, Hyungeun; Barry, Robert L; Herr, Hugh M.
Afiliación
  • Chicos LA; Biomechatronics Group, Massachusetts Institute of Technology, Media Lab, Cambridge, MA, 02139, USA. laurachi@media.mit.edu.
  • Rangaprakash D; K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. laurachi@media.mit.edu.
  • Srinivasan SS; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
  • Gutierrez-Arango S; Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA.
  • Song H; Harvard-MA Institute of Technology Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.
  • Barry RL; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA.
  • Herr HM; Biomechatronics Group, Massachusetts Institute of Technology, Media Lab, Cambridge, MA, 02139, USA.
Sci Rep ; 14(1): 13456, 2024 06 12.
Article en En | MEDLINE | ID: mdl-38862558
ABSTRACT
The agonist-antagonist myoneural interface (AMI) is an amputation surgery that preserves sensorimotor signaling mechanisms of the central-peripheral nervous systems. Our first neuroimaging study investigating AMI subjects conducted by Srinivasan et al. (2020) focused on task-based neural signatures, and showed evidence of proprioceptive feedback to the central nervous system. The study of resting state neural activity helps non-invasively characterize the neural patterns that prime task response. In this study on resting state functional magnetic resonance imaging in AMI subjects, we compared functional connectivity in patients with transtibial AMI (n = 12) and traditional (n = 7) amputations (TA). To test our hypothesis that we would find significant neurophysiological differences between AMI and TA subjects, we performed a whole-brain exploratory analysis to identify a seed region; namely, we conducted ANOVA, followed by t-test statistics to locate a seed in the salience network. Then, we implemented a seed-based connectivity analysis to gather cluster-level inferences contrasting our subject groups. We show evidence supporting our hypothesis that the AMI surgery induces functional network reorganization resulting in a neural configuration that significantly differs from the neural configuration after TA surgery. AMI subjects show significantly less coupling with regions functionally dedicated to selecting where to focus attention when it comes to salient stimuli. Our findings provide researchers and clinicians with a critical mechanistic understanding of the effect of AMI amputation on brain networks at rest, which has promising implications for improved neurorehabilitation and prosthetic control.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Amputación Quirúrgica Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Amputación Quirúrgica Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido