Your browser doesn't support javascript.
loading
DAS-DDI: A dual-view framework with drug association and drug structure for drug-drug interaction prediction.
Niu, Dongjiang; Zhang, Lianwei; Zhang, Beiyi; Zhang, Qiang; Li, Zhen.
Afiliación
  • Niu D; College of Computer Science and Technology, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China.
  • Zhang L; College of Computer Science and Technology, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China.
  • Zhang B; College of Computer Science and Technology, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China.
  • Zhang Q; College of Computer Science and Technology, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China.
  • Li Z; College of Computer Science and Technology, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China. Electronic address: lizhen@qdu.edu.cn.
J Biomed Inform ; 156: 104672, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38857738
ABSTRACT
In drug development and clinical application, drug-drug interaction (DDI) prediction is crucial for patient safety and therapeutic efficacy. However, traditional methods for DDI prediction often overlook the structural features of drugs and the complex interrelationships between them, which affect the accuracy and interpretability of the model. In this paper, a novel dual-view DDI prediction framework, DAS-DDI is proposed. Firstly, a drug association network is constructed based on similarity information among drugs, which could provide rich context information for DDI prediction. Subsequently, a novel drug substructure extraction method is proposed, which could update the features of nodes and chemical bonds simultaneously, improving the comprehensiveness of the feature. Furthermore, an attention mechanism is employed to fuse multiple drug embeddings from different views dynamically, enhancing the discriminative ability of the model in handling multi-view data. Comparative experiments on three public datasets demonstrate the superiority of DAS-DDI compared with other state-of-the-art models under two scenarios.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Interacciones Farmacológicas Límite: Humans Idioma: En Revista: J Biomed Inform Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Interacciones Farmacológicas Límite: Humans Idioma: En Revista: J Biomed Inform Asunto de la revista: INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos