Your browser doesn't support javascript.
loading
Development of a machine learning-based model for predicting positive margins in high-grade squamous intraepithelial lesion (HSIL) treatment by Cold Knife Conization(CKC): a single-center retrospective study.
Zhang, Lin; Zheng, Yahong; Lei, Lingyu; Zhang, Xufeng; Yang, Jing; Zeng, Yong; Chen, Keming.
Afiliación
  • Zhang L; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Shashi District, 8 Hangkong Road, Jingzhou, Hubei, China.
  • Zheng Y; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Shashi District, 8 Hangkong Road, Jingzhou, Hubei, China.
  • Lei L; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Shashi District, 8 Hangkong Road, Jingzhou, Hubei, China.
  • Zhang X; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Shashi District, 8 Hangkong Road, Jingzhou, Hubei, China.
  • Yang J; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Shashi District, 8 Hangkong Road, Jingzhou, Hubei, China.
  • Zeng Y; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Shashi District, 8 Hangkong Road, Jingzhou, Hubei, China. 349213101@qq.com.
  • Chen K; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Shashi District, 8 Hangkong Road, Jingzhou, Hubei, China. chenkeming1969@163.com.
BMC Womens Health ; 24(1): 332, 2024 Jun 07.
Article en En | MEDLINE | ID: mdl-38849836
ABSTRACT

OBJECTIVES:

This study aims to analyze factors associated with positive surgical margins following cold knife conization (CKC) in patients with cervical high-grade squamous intraepithelial lesion (HSIL) and to develop a machine-learning-based risk prediction model.

METHOD:

We conducted a retrospective analysis of 3,343 patients who underwent CKC for HSIL at our institution. Logistic regression was employed to examine the relationship between demographic and pathological characteristics and the occurrence of positive surgical margins. Various machine learning methods were then applied to construct and evaluate the performance of the risk prediction model.

RESULTS:

The overall rate of positive surgical margins was 12.9%. Independent risk factors identified included glandular involvement (OR = 1.716, 95% CI 1.345-2.189), transformation zone III (OR = 2.838, 95% CI 2.258-3.568), HPV16/18 infection (OR = 2.863, 95% CI 2.247-3.648), multiple HR-HPV infections (OR = 1.930, 95% CI 1.537-2.425), TCT ≥ ASC-H (OR = 3.251, 95% CI 2.584-4.091), and lesions covering ≥ 3 quadrants (OR = 3.264, 95% CI 2.593-4.110). Logistic regression demonstrated the best prediction performance, with an accuracy of 74.7%, sensitivity of 76.7%, specificity of 74.4%, and AUC of 0.826.

CONCLUSION:

Independent risk factors for positive margins after CKC include HPV16/18 infection, multiple HR-HPV infections, glandular involvement, extensive lesion coverage, high TCT grades, and involvement of transformation zone III. The logistic regression model provides a robust and clinically valuable tool for predicting the risk of positive margins, guiding clinical decisions and patient management post-CKC.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias del Cuello Uterino / Conización / Aprendizaje Automático / Márgenes de Escisión Límite: Adult / Aged / Female / Humans / Middle aged Idioma: En Revista: BMC Womens Health Asunto de la revista: SAUDE DA MULHER Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias del Cuello Uterino / Conización / Aprendizaje Automático / Márgenes de Escisión Límite: Adult / Aged / Female / Humans / Middle aged Idioma: En Revista: BMC Womens Health Asunto de la revista: SAUDE DA MULHER Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido