Your browser doesn't support javascript.
loading
Ceramic Meta-Aerogel with Thermal Superinsulation up to 1700 °C Constructed by Self-Crosslinked Nanofibrous Network via Reaction Electrospinning.
Xu, Zhen; Liu, Yiming; Xin, Qi; Dai, Jin; Yu, Jianyong; Cheng, Longdi; Liu, Yi-Tao; Ding, Bin.
Afiliación
  • Xu Z; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Tehnology, Donghua University, Shanghai, 201620, China.
  • Liu Y; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Tehnology, Donghua University, Shanghai, 201620, China.
  • Xin Q; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Tehnology, Donghua University, Shanghai, 201620, China.
  • Dai J; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Tehnology, Donghua University, Shanghai, 201620, China.
  • Yu J; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Tehnology, Donghua University, Shanghai, 201620, China.
  • Cheng L; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Tehnology, Donghua University, Shanghai, 201620, China.
  • Liu YT; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Tehnology, Donghua University, Shanghai, 201620, China.
  • Ding B; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Tehnology, Donghua University, Shanghai, 201620, China.
Adv Mater ; 36(32): e2401299, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38837520
ABSTRACT
Thermal insulation under extreme conditions requires the materials to be capable of withstanding complex thermo-mechanical stress, significant gradient temperature transition, and high-frequency thermal shock. The excellent structural and functional properties of ceramic aerogels make them attractive for thermal insulation. However, in extremely high-temperature environments (above 1500 °C), they typically exhibit limited insulation capacity and thermo-mechanical stability, which may lead to catastrophic accidents, and this problem is never effectively addressed. Here, a novel ceramic meta-aerogel constructed from a crosslinked nanofiber network using a reaction electrospinning strategy, which ensures excellent thermo-mechanical stability and superinsulation under extreme conditions, is designed. The ceramic meta-aerogel has an ultralow thermal conductivity of 0.027 W m-1 k-1, and the cold surface temperature is only 303 °C in a 1700 °C high-temperature environment. After undergoing a significant gradient temperature transition from liquid nitrogen to 1700 °C flame burning, the ceramic meta-aerogel can still withstand thousands of shears, flexures, compressions, and other complex forms of mechanical action without structural collapse. This work provides a new insight for developing ceramic aerogels that can be used for a long period in extremely high-temperature environments.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania