HE2Gene: image-to-RNA translation via multi-task learning for spatial transcriptomics data.
Bioinformatics
; 40(6)2024 06 03.
Article
en En
| MEDLINE
| ID: mdl-38837395
ABSTRACT
MOTIVATION Tissue context and molecular profiling are commonly used measures in understanding normal development and disease pathology. In recent years, the development of spatial molecular profiling technologies (e.g. spatial resolved transcriptomics) has enabled the exploration of quantitative links between tissue morphology and gene expression. However, these technologies remain expensive and time-consuming, with subsequent analyses necessitating high-throughput pathological annotations. On the other hand, existing computational tools are limited to predicting only a few dozen to several hundred genes, and the majority of the methods are designed for bulk RNA-seq. RESULTS:
In this context, we propose HE2Gene, the first multi-task learning-based method capable of predicting tens of thousands of spot-level gene expressions along with pathological annotations from H&E-stained images. Experimental results demonstrate that HE2Gene is comparable to state-of-the-art methods and generalizes well on an external dataset without the need for re-training. Moreover, HE2Gene preserves the annotated spatial domains and has the potential to identify biomarkers. This capability facilitates cancer diagnosis and broadens its applicability to investigate gene-disease associations. AVAILABILITY AND IMPLEMENTATION The source code and data information has been deposited at https//github.com/Microbiods/HE2Gene.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Transcriptoma
Límite:
Humans
Idioma:
En
Revista:
Bioinformatics
Asunto de la revista:
INFORMATICA MEDICA
Año:
2024
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido