STEAP2 promotes hepatocellular carcinoma progression via increased copper levels and stress-activated MAP kinase activity.
Sci Rep
; 14(1): 12753, 2024 06 03.
Article
en En
| MEDLINE
| ID: mdl-38830975
ABSTRACT
Six Transmembrane Epithelial Antigen of Prostate 2 (STEAP2) belongs to a family of metalloreductases, which indirectly aid in uptake of iron and copper ions. Its role in hepatocellular carcinoma (HCC) remains to be characterized. Here, we report that STEAP2 expression was upregulated in HCC tumors compared with paired adjacent non-tumor tissues by RNA sequencing, RT-qPCR, Western blotting, and immunostaining. Public HCC datasets demonstrated upregulated STEAP2 expression in HCC and positive association with tumor grade. Transient and stable knockdown (KD) of STEAP2 in HCC cell lines abrogated their malignant phenotypes in vitro and in vivo, while STEAP2 overexpression showed opposite effects. STEAP2 KD in HCC cells led to significant alteration of genes associated with extracellular matrix organization, cell adhesion/chemotaxis, negative enrichment of an invasiveness signature gene set, and inhibition of cell migration/invasion. STEAP2 KD reduced intracellular copper levels and activation of stress-activated MAP kinases including p38 and JNK. Treatment with copper rescued the reduced HCC cell migration due to STEAP2 KD and activated p38 and JNK. Furthermore, treatment with p38 or JNK inhibitors significantly inhibited copper-mediated cell migration. Thus, STEAP2 plays a malignant-promoting role in HCC cells by driving migration/invasion via increased copper levels and MAP kinase activities. Our study uncovered a novel molecular mechanism contributing to HCC malignancy and a potential therapeutic target for HCC treatment.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Oxidorreductasas
/
Movimiento Celular
/
Carcinoma Hepatocelular
/
Cobre
Límite:
Animals
/
Female
/
Humans
/
Male
Idioma:
En
Revista:
Sci Rep
Año:
2024
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido