Your browser doesn't support javascript.
loading
Marine Bacillus haynesii chitinase: Purification, characterization and antifungal potential for sustainable chitin bioconversion.
Govindaraj, Vishnupriya; Kim, Se-Kwon; Raval, Ritu; Raval, Keyur.
Afiliación
  • Govindaraj V; Department of Chemical Engineering, National Institute of Technology, Surathkal, Mangalore, 575025, Karnataka, India.
  • Kim SK; Department of Marine Science & Convergence Engineering, College of Science & Technology, Hanyang, University Erica Campus, Ansan, 11558, Republic of Korea. Electronic address: sknkim@pknu.ac.kr.
  • Raval R; Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India. Electronic address: ritu.raval@manipal.edu.
  • Raval K; Department of Chemical Engineering, National Institute of Technology, Surathkal, Mangalore, 575025, Karnataka, India. Electronic address: keyurnraval@nitk.edu.in.
Carbohydr Res ; 541: 109170, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38830279
ABSTRACT
The development of chitinase tailored for the bioconversion of chitin to chitin oligosaccharides has attracted significant attention due to its potential to alleviate environmental pollution associated with chemical conversion processes. In this present investigation, we purified extracellular chitinase derived from marine Bacillus haynesii to homogeneity and subsequently characterized it. The molecular weight of BhChi was approximately 35 kDa. BhChi displayed its peak catalytic activity at pH 6.0, with an optimal temperature of 37 °C. It exhibited stability across a pH range of 6.0-9.0. In addition, BhChi showed activation in the presence of Mn2+ with the improved activity of 105 U mL-1. Ca2+ and Fe2+ metal ions did not have any significant impact on enzyme activity. Under the optimized enzymatic conditions, there was a notable enhancement in catalytic activity on colloidal chitin with Km of 0.01 mg mL-1 and Vmax of 5.75 mmol min-1. Kcat and catalytic efficiency were measured at 1.91 s-1 and 191 mL mg-1 s-1, respectively. The product profiling of BhChi using thin layer chromatography and Mass spectrometric techniques hinted an exochitinase mode of action with chitobiose and N-Acetyl glucosamine as the products. This study represents the first report on an exochitinase from Bacillus haynesii. Furthermore, the chitinase showcased promising antifungal properties against key pathogens, Fusarium oxysporum and Penicillium chrysogenum, reinforcing its potential as a potent biocontrol agent.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bacillus / Quitina / Quitinasas / Antifúngicos Idioma: En Revista: Carbohydr Res Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bacillus / Quitina / Quitinasas / Antifúngicos Idioma: En Revista: Carbohydr Res Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Países Bajos