Your browser doesn't support javascript.
loading
Allosteric Modulation of Thrombin by Thrombomodulin: Insights from Logistic Regression and Statistical Analysis of Molecular Dynamics Simulations.
Wu, Dizhou; Salsbury, Freddie R.
Afiliación
  • Wu D; Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27106, United States.
  • Salsbury FR; Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27106, United States.
ACS Omega ; 9(21): 23086-23100, 2024 May 28.
Article en En | MEDLINE | ID: mdl-38826540
ABSTRACT
Thrombomodulin (TM), a transmembrane receptor integral to the anticoagulant pathway, governs thrombin's substrate specificity via interaction with thrombin's anion-binding exosite I. Despite its established role, the precise mechanisms underlying this regulatory function are yet to be fully unraveled. In this study, we deepen the understanding of these mechanisms through eight independent 1 µs all-atom simulations, analyzing thrombin both in its free form and when bound to TM fragments TM456 and TM56. Our investigations revealed distinct and significant conformational changes in thrombin mediated by the binding of TM56 and TM456. While TM56 predominantly influences motions within exosite I, TM456 orchestrates coordinated alterations across various loop regions, thereby unveiling a multifaceted modulatory role that extends beyond that of TM56. A highlight of our study is the identification of critical hydrogen bonds that undergo transformations during TM56 and TM456 binding, shedding light on the pivotal allosteric influence exerted by TM4 on thrombin's structural dynamics. This work offers a nuanced appreciation of TM's regulatory role in blood coagulation, paving the way for innovative approaches in the development of anticoagulant therapies and expanding the horizons in oncology therapeutics through a deeper understanding of molecular interactions in the coagulation pathway.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Omega Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Omega Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos