Your browser doesn't support javascript.
loading
AI-powered microscopy image analysis for parasitology: integrating human expertise.
Feng, Ruijun; Li, Sen; Zhang, Yang.
Afiliación
  • Feng R; College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China; School of Computer Science and Engineering, University of New South Wales, Sydney, Australia.
  • Li S; College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
  • Zhang Y; College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China. Electronic address: zhangyang07@hit.edu.cn.
Trends Parasitol ; 40(7): 633-646, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38824067
ABSTRACT
Microscopy image analysis plays a pivotal role in parasitology research. Deep learning (DL), a subset of artificial intelligence (AI), has garnered significant attention. However, traditional DL-based methods for general purposes are data-driven, often lacking explainability due to their black-box nature and sparse instructional resources. To address these challenges, this article presents a comprehensive review of recent advancements in knowledge-integrated DL models tailored for microscopy image analysis in parasitology. The massive amounts of human expert knowledge from parasitologists can enhance the accuracy and explainability of AI-driven decisions. It is expected that the adoption of knowledge-integrated DL models will open up a wide range of applications in the field of parasitology.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Parasitología / Procesamiento de Imagen Asistido por Computador / Inteligencia Artificial / Microscopía Límite: Humans Idioma: En Revista: Trends Parasitol Asunto de la revista: PARASITOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Parasitología / Procesamiento de Imagen Asistido por Computador / Inteligencia Artificial / Microscopía Límite: Humans Idioma: En Revista: Trends Parasitol Asunto de la revista: PARASITOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido