Your browser doesn't support javascript.
loading
Reducing aerosol and ammonia emission in post-combustion CO2 capture: Additives as key solutions.
Shao, Lingyu; Xu, Feng; Wu, Zhicheng; Liu, Chang; Pan, Chengjin; Wang, Yifan; Yang, Zhengda; Wang, Tao; Yao, Longchao; Zheng, Chenghang; Gao, Xiang.
Afiliación
  • Shao L; State Key Lab of Clean Energy Utilization, State Environmental Protection Engineering Center for Coal-Fired Air Pollution Control, Zhejiang University, 38 Zheda Road, Hangzhou 310027, People's Republic of China.
  • Xu F; State Key Lab of Clean Energy Utilization, State Environmental Protection Engineering Center for Coal-Fired Air Pollution Control, Zhejiang University, 38 Zheda Road, Hangzhou 310027, People's Republic of China.
  • Wu Z; State Key Lab of Clean Energy Utilization, State Environmental Protection Engineering Center for Coal-Fired Air Pollution Control, Zhejiang University, 38 Zheda Road, Hangzhou 310027, People's Republic of China.
  • Liu C; State Key Lab of Clean Energy Utilization, State Environmental Protection Engineering Center for Coal-Fired Air Pollution Control, Zhejiang University, 38 Zheda Road, Hangzhou 310027, People's Republic of China.
  • Pan C; State Key Lab of Clean Energy Utilization, State Environmental Protection Engineering Center for Coal-Fired Air Pollution Control, Zhejiang University, 38 Zheda Road, Hangzhou 310027, People's Republic of China.
  • Wang Y; State Key Lab of Clean Energy Utilization, State Environmental Protection Engineering Center for Coal-Fired Air Pollution Control, Zhejiang University, 38 Zheda Road, Hangzhou 310027, People's Republic of China.
  • Yang Z; China University of Petroleum East China, College New Energy, Qingdao 266580, People's Republic of China.
  • Wang T; State Key Lab of Clean Energy Utilization, State Environmental Protection Engineering Center for Coal-Fired Air Pollution Control, Zhejiang University, 38 Zheda Road, Hangzhou 310027, People's Republic of China.
  • Yao L; State Key Lab of Clean Energy Utilization, State Environmental Protection Engineering Center for Coal-Fired Air Pollution Control, Zhejiang University, 38 Zheda Road, Hangzhou 310027, People's Republic of China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, People's Republic of China
  • Zheng C; State Key Lab of Clean Energy Utilization, State Environmental Protection Engineering Center for Coal-Fired Air Pollution Control, Zhejiang University, 38 Zheda Road, Hangzhou 310027, People's Republic of China; Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310051, People's Republic of China; J
  • Gao X; State Key Lab of Clean Energy Utilization, State Environmental Protection Engineering Center for Coal-Fired Air Pollution Control, Zhejiang University, 38 Zheda Road, Hangzhou 310027, People's Republic of China; Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310051, People's Republic of China; J
Sci Total Environ ; 943: 173627, 2024 Sep 15.
Article en En | MEDLINE | ID: mdl-38821285
ABSTRACT
Advancement of the absorbent for CO2 capture is essential in optimizing the performance and reducing the negative environmental effects associated with this technology. Despite ammonia's promise as an absorbent, the volatility limits its practical application and creates potential environmental pollution. Therein, we assess various additives (amino acids, carbonates, and alkanolamines) for ammonia-based solvents using multi-stage circulation absorber from the viewpoints of aerosol emission, ammonia emission, and CO2 capture efficiency. Experimental findings reveal that ammonia volatilization can be inhibited by the protonation of free ammonia by carboxyl groups and the formation of hydrogen bonding between amino/hydroxyl groups and ammonia, with ammonia emission reduced by 21.7 %, aerosol emission reduced by 26.5 %, and CO2 capture efficiency increased to a maximum of 87.8 % under the condition of adding histidine. Moreover, the experiment highlights a positive correlation between total ammonia emission and aerosol concentration/diameter. Additionally, tests combining source abatement with water wash exhibit up to 50.5 % aerosol removal efficiency and up to 76.6 % ammonia removal efficiency. To further mitigate emissions, a comprehensive approach is proposed, achieving an 84.4 % reduction in ammonia emission and a 61.9 % reduction in aerosol emission. Finally, a method for recycling ammonia for desulfurization is suggested.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos