Your browser doesn't support javascript.
loading
Ascorbic acid-mediated reduction of arabinoxylan viscosity through free radical reactions.
Tang, Yu-Jie; He, Wei-Wei; Wang, Xin; Jia, Run-Qi; Song, Xiao-Xiao; Yin, Jun-Yi.
Afiliación
  • Tang YJ; State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi province 330047, China.
  • He WW; State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi province 330047, China.
  • Wang X; State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi province 330047, China.
  • Jia RQ; State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi province 330047, China.
  • Song XX; State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi province 330047, China.
  • Yin JY; State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi province 330047, China. Electronic address: yinjy@ncu.edu.cn.
Int J Biol Macromol ; 271(Pt 1): 132291, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38816296
ABSTRACT
Arabinoxylan (AX) is a potential natural food additive that can enhance the textural properties of food. However, the addition of ascorbic acid (AA) can easily lead to a decrease in the viscosity of AX, which poses a challenge in the development of AX-rich foods. Therefore, the purpose of this study is to elucidate the mechanisms behind the reduction in AX viscosity in the presence of AA. The results indicated that AA could reduce the apparent viscosity and molecular weight of AX without significantly affecting the monosaccharide composition, suggesting a potential mechanism related to the cleavage of AX glycosidic bonds. Interestingly, free radicals were present in the reaction system, and the generation of free radicals under different conditions was consistent with the reduction in apparent viscosity of AX. Furthermore, the reduction in AX apparent viscosity by AA was influenced by various factors including AA concentration, reaction time, temperature, pH, and metal ions. These findings suggested that the mechanism of AX degradation may be due to AA-induced free radical generation, leading to non-selective attacks on glycosidic bonds. Therefore, this study revealed that the potential mechanism behind the reduction in AX viscosity induced by AA involved the generation of ascorbic acid radicals.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ácido Ascórbico / Xilanos / Peso Molecular Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ácido Ascórbico / Xilanos / Peso Molecular Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos