Your browser doesn't support javascript.
loading
Turing instability analysis and parameter identification based on optimal control and statistics method for a rumor propagation system.
Li, Bingxin; Zhu, Linhe.
Afiliación
  • Li B; School of Mathematical Sciences, Jiangsu University, Zhenjiang 212013, China.
  • Zhu L; School of Mathematical Sciences, Jiangsu University, Zhenjiang 212013, China.
Chaos ; 34(5)2024 May 01.
Article en En | MEDLINE | ID: mdl-38814676
ABSTRACT
This study establishes a reaction-diffusion system to capture the dynamics of rumor propagation, considering two possibilities of contact transmission. The sufficient and necessary conditions for a positive equilibrium point are provided, and the Turing instability conditions for this equilibrium point are derived. Furthermore, utilizing variational inequalities, a first-order necessary condition for parameter identification based on optimal control is established. During the numerical simulation process, the correctness of the Turing instability conditions is verified, and optimal control-based parameter identification is applied to the target pattern. Additionally, statistical methods are employed for pattern parameter identification. The identification results demonstrate that optimal control-based parameter identification exhibits higher efficiency and accuracy. Finally, both theories' parameter identification principles are extended to a small-world network, yielding consistent conclusions with continuous space.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chaos Asunto de la revista: CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chaos Asunto de la revista: CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos