Your browser doesn't support javascript.
loading
Exploring regenerative coupling in phononic crystals for room temperature quantum optomechanics.
Weituschat, Lukas M; Castro, Irene; Colomar, Irene; Everly, Christer; Postigo, Pablo A; Ramos, Daniel.
Afiliación
  • Weituschat LM; Optomechanics Lab, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, 3, Sor Juana Inés de la Cruz, 28049, Madrid, Spain.
  • Castro I; Optomechanics Lab, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, 3, Sor Juana Inés de la Cruz, 28049, Madrid, Spain.
  • Colomar I; Optomechanics Lab, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, 3, Sor Juana Inés de la Cruz, 28049, Madrid, Spain.
  • Everly C; The Institute of Optics, University of Rochester, Rochester, NY, 14627, USA.
  • Postigo PA; The Institute of Optics, University of Rochester, Rochester, NY, 14627, USA.
  • Ramos D; Optomechanics Lab, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, 3, Sor Juana Inés de la Cruz, 28049, Madrid, Spain. daniel.ramos@csic.es.
Sci Rep ; 14(1): 12330, 2024 May 29.
Article en En | MEDLINE | ID: mdl-38811848
ABSTRACT
Quantum technologies play a pivotal role in driving transformative advancements across diverse fields, surpassing classical approaches and empowering us to address complex challenges more effectively; however, the need for ultra-low temperatures limits the use of these technologies to particular fields. This work comes to alleviate this problem. We present a way of phononic bandgap engineering using FEM by which the radiative mechanical energy dissipation of a nanomechanical oscillator can be significantly suppressed through coupling with a complementary oscillating mode of a defect of the surrounding phononic crystal (PnC). Applied to an optomechanically coupled nanobeam resonator in the megahertz regime, we find a mechanical quality factor improvement of up to four orders of magnitude compared to conventional PnC designs. As this method is based on geometrical optimization of the PnC and frequency matching of the resonator and defect mode, it is applicable to a wide range of resonator types and frequency ranges. Taking advantage of the, hereinafter referred to as, "regenerative coupling" in phononic crystals, the presented device is capable of reaching f × Q products exceeding 10E16 Hz with only two rows of PnC shield. Thus, stable quantum states with mechanical decoherence times up to 700 µs at room temperature can be obtained, offering new opportunities for the optimization of mechanical resonator performance and advancing the room temperature quantum field across diverse applications.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: España Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: España Pais de publicación: Reino Unido