Your browser doesn't support javascript.
loading
LINC00887 Acts as an Enhancer RNA to Promote Medullary Thyroid Carcinoma Progression by Binding with FOXQ1.
Liu, Daxiang; Wang, Wenjing; Wu, Yanzhao; Qiu, Yongle; Zhang, Lan.
Afiliación
  • Liu D; Department of Otolaryngology & Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China.
  • Wang W; Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035 , China.
  • Wu Y; Department of Otolaryngology & Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China.
  • Qiu Y; Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035 , China.
  • Zhang L; Department of Otolaryngology & Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China.
Curr Cancer Drug Targets ; 24(5): 519-533, 2024.
Article en En | MEDLINE | ID: mdl-38804344
ABSTRACT

BACKGROUND:

Medullary thyroid carcinoma (MTC) is a rare but aggressive endocrine malignancy that originates from the parafollicular C cells of the thyroid gland. Enhancer RNAs (eRNAs) are non-coding RNAs transcribed from enhancer regions, which are critical regulators of tumorigenesis. However, the roles and regulatory mechanisms of eRNAs in MTC remain poorly understood. This study aims to identify key eRNAs regulating the malignant phenotype of MTC and to uncover transcription factors involved in the regulation of key eRNAs.

METHODS:

GSE32662 and GSE114068 were used for the identification of differentially expressed genes, eRNAs, enhancers and enhancer-regulated genes in MTC. Metascape and the transcription factor affinity prediction method were used for gene function enrichment and transcription factor prediction, respectively. qRT-PCR was used to detect gene transcription levels. ChIP-qPCR was used to assess the binding of histone H3 lysine 27 acetylation (H3K27ac)-enriched regions to anti- H3K27ac. RIP-qPCR was used to detect the binding between FOXQ1 and LINC00887. CCK8 and Transwell were performed to measure the proliferation and invasion of MTC cells, respectively. Intracellular reactive oxygen species (ROS) levels were quantified using a ROS assay kit.

RESULTS:

Four eRNAs (H1FX-AS1, LINC00887, MCM3AP-AS1 and A1BG-AS1) were screened, among which LINC00887 was the key eRNA promoting the proliferation and invasion of MTC cells. A total of 135 genes controlled by LINC00887-regulated enhancers were identified; among them, BCL2, PRDX1, SFTPD, TPO, GSS, RAD52, ZNF580, and ZFP36L1 were significantly enriched in the "ROS metabolic process" term. As a transcription factor regulating genes enriched in the "ROS metabolic process" term, FOXQ1 could recruit LINC00887. Overexpression of FOXQ1 restored LINC00887 knockdown-induced downregulation of GSS and ZFP36L1 transcription in MTC cells. Additionally, FOXQ1 overexpression counteracted the inhibitory effects of LINC00887 knockdown on the proliferation and invasion of MTC cells and the promotion of intracellular ROS accumulation induced by LINC00887 knockdown.

CONCLUSION:

LINC00887 was identified as a key eRNA promoting the malignant phenotype of MTC cells. The involvement of FOXQ1 was essential for LINC00887 to play a pro-tumorigenic role in MTC. Our findings suggest that the FOXQ1/LINC00887 axis is a potential therapeutic target for MTC.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias de la Tiroides / Regulación Neoplásica de la Expresión Génica / Carcinoma Neuroendocrino / Proliferación Celular / Factores de Transcripción Forkhead / ARN Largo no Codificante Límite: Humans Idioma: En Revista: Curr Cancer Drug Targets Asunto de la revista: ANTINEOPLASICOS / NEOPLASIAS Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias de la Tiroides / Regulación Neoplásica de la Expresión Génica / Carcinoma Neuroendocrino / Proliferación Celular / Factores de Transcripción Forkhead / ARN Largo no Codificante Límite: Humans Idioma: En Revista: Curr Cancer Drug Targets Asunto de la revista: ANTINEOPLASICOS / NEOPLASIAS Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos