Bacterial nanocellulose-clay film as an eco-friendly sorbent for superior pollutants removal from aqueous solutions.
Environ Res
; 257: 119231, 2024 Sep 15.
Article
en En
| MEDLINE
| ID: mdl-38797468
ABSTRACT
The persistent water treatment and separation challenge necessitates innovative and sustainable advances to tackle conventional and emerging contaminants in the aquatic environment effectively. Therefore, a unique three-dimensional (3D) network composite film (BNC-KC) comprised of bacterial nanocellulose (BNC) incorporated nano-kaolinite clay particles (KC) was successfully synthesized via an in-situ approach. The microscopic characterization of BNC-KC revealed an effective integration of KC within the 3D matrix of BNC. The investigated mechanical properties of BNC-KC demonstrated a better performance compared to BNC. Thereafter, the sorption performance of BNC-KC films towards basic blue 9 dye (Bb9) and norfloxacin (NFX) antibiotic from water was investigated. The maximum sorption capacities of BNC-KC for Bb9 and NFX were 127.64 and 101.68 mg/g, respectively. Mechanistic studies showed that electrostatic interactions, multi-layered sorption, and 3D structure are pivotal in the NFX/Bb9 sorption process. The intricate architecture of BNC-KC effectively traps molecules within the interlayer spaces, significantly increasing sorption efficiency. The distinctive structural configuration of BNC-KC films effectively addressed the challenges of post-water treatment separation while concurrently mitigating waste generation. The environmental evaluation, engineering, and economic feasibility of BNC-KC are also discussed. The cost estimation assessment of BNC-KC revealed the potential to remove NFX and Bb9 from water at an economically viable cost.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Contaminantes Químicos del Agua
/
Celulosa
Idioma:
En
Revista:
Environ Res
Año:
2024
Tipo del documento:
Article
Pais de publicación:
Países Bajos