Your browser doesn't support javascript.
loading
Mechanical heterogeneity in a soft biomaterial niche controls BMP2 signaling.
Brauer, Erik; Herrera, Aaron; Fritsche-Guenther, Raphaela; Görlitz, Sophie; Leemhuis, Hans; Knaus, Petra; Kirwan, Jennifer A; Duda, Georg N; Petersen, Ansgar.
Afiliación
  • Brauer E; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany; Berlin School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany; BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Ger
  • Herrera A; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany; Berlin School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany; BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Ger
  • Fritsche-Guenther R; BIH Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
  • Görlitz S; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany; Berlin School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany; BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Ger
  • Leemhuis H; Matricel GmbH, Herzogenrath, Germany.
  • Knaus P; Berlin School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany; Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany.
  • Kirwan JA; BIH Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
  • Duda GN; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany; Berlin School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany; BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Ger
  • Petersen A; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany; Berlin School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany; BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Ger
Biomaterials ; 309: 122614, 2024 Sep.
Article en En | MEDLINE | ID: mdl-38788455
ABSTRACT
The extracellular matrix is known to impact cell function during regeneration by modulating growth factor signaling. However, how the mechanical properties and structure of biomaterials can be used to optimize the cellular response to growth factors is widely neglected. Here, we engineered a macroporous biomaterial to study cellular signaling in environments that mimic the mechanical stiffness but also the mechanical heterogeneity of native extracellular matrix. We found that the mechanical interaction of cells with the heterogeneous and non-linear deformation properties of soft matrices (E < 5 kPa) enhances BMP-2 growth factor signaling with high relevance for tissue regeneration. In contrast, this effect is absent in homogeneous hydrogels that are often used to study cell responses to mechanical cues. Live cell imaging and in silico finite element modeling further revealed that a subpopulation of highly active, fast migrating cells is responsible for most of the material deformation, while a second, less active population experiences this deformation as an extrinsic mechanical stimulation. At an overall low cell density, the active cell population dominates the process, suggesting that it plays a particularly important role in early tissue healing scenarios where cells invade tissue defects or implanted biomaterials. Taken together, our findings demonstrate that the mechanical heterogeneity of the natural extracellular matrix environment plays an important role in triggering regeneration by endogenously acting growth factors. This suggests the inclusion of such mechanical complexity as a design parameter in future biomaterials, in addition to established parameters such as mechanical stiffness and stress relaxation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Materiales Biocompatibles / Transducción de Señal / Hidrogeles / Matriz Extracelular / Proteína Morfogenética Ósea 2 Límite: Animals / Humans Idioma: En Revista: Biomaterials Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Materiales Biocompatibles / Transducción de Señal / Hidrogeles / Matriz Extracelular / Proteína Morfogenética Ósea 2 Límite: Animals / Humans Idioma: En Revista: Biomaterials Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos