Your browser doesn't support javascript.
loading
Molecular Environment Modulates CO2 Liberation from Carboxy-Biotin.
Murillo-Lopez, Juliana A; Villegas-Escobar, Nery; Vogt-Geisse, Stefan; Vöhringer-Martinez, Esteban.
Afiliación
  • Murillo-Lopez JA; Departamento de Físico-Química Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4070139, Chile.
  • Villegas-Escobar N; Departamento de Físico-Química Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4070139, Chile.
  • Vogt-Geisse S; Departamento de Físico-Química Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4070139, Chile.
  • Vöhringer-Martinez E; Departamento de Físico-Química Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4070139, Chile.
J Phys Chem B ; 128(22): 5327-5335, 2024 Jun 06.
Article en En | MEDLINE | ID: mdl-38771940
ABSTRACT
Carboxy-biotin serves as a coenzyme in certain carboxylases, exhibiting the remarkable capability to transfer a carboxy group to specific substrates. This process is made possible by the presence of biotin, a unique molecule that consists of a sulfur-containing tetrahydrothiophene ring fused to a ureido group. It is covalently attached to the enzyme via a flexible linker, allowing for its functionality. Biotin-dependent carboxylases consist of two distinct domains. The first domain (BC) facilitates biotin carboxylation by utilizing ATP, while the second domain (CT) transfers CO2 to the substrate. The process of ATP-dependent carboxylation using bicarbonate in the biotin carboxylase domain (BC) is well-known. However, the precise mechanism by which CO2 is released in the carboxyltransferase domain (CT) is still not fully understood. We employed advanced computational chemistry methods to investigate the decarboxylation process of carboxy-biotin in various molecular environments and different protonation states. Regardless of the polarity of the molecular surroundings, decarboxylation only occurs spontaneously in the protonated form. To determine the protonation state of biotin in different environments, we established an accurate computational chemistry method for calculating the pKa value of carboxy-biotin, reaching sub-kcal/mol accuracy. Based on our findings, nonpolar environments, such as the active site of the carboxyltransferase domain, have the ability to cause the spontaneous release of CO2 from carboxy-biotin. The CO2 release takes place spontaneously from protonated carboxy-biotin, promoting the carboxylation of substrates.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Biotina / Dióxido de Carbono Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Chile Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Biotina / Dióxido de Carbono Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Chile Pais de publicación: Estados Unidos