Your browser doesn't support javascript.
loading
Adding mechanobiological cell features to finite element analysis of an immediately loaded dental implant.
Martinello, Poliana Alexandra; Cartagena-Molina, Andrés Felipe; Capelletti, Lucas Kravchychyn; Fernandes, Bruno Viezzer; Franco, Ana Paula Gebert de Oliveira; Mercuri, Emilio Graciliano Ferreira; Bombarda, Nara Hellen Campanha.
Afiliación
  • Martinello PA; Department of Dentistry, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil.
  • Cartagena-Molina AF; Department of Dentistry, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil.
  • Capelletti LK; Department of Dentistry, State University of Londrina, Londrina, Paraná, Brazil.
  • Fernandes BV; Department of Dentistry, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil.
  • Franco APGO; Department of Dentistry, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil.
  • Mercuri EGF; Department of Electrical Engineering and Industrial Informatics, Federal Technological University of Paraná, Curitiba, Paraná, Brazil.
  • Bombarda NHC; Environmental Engineering Department, Federal University of Paraná, Curitiba, Paraná, Brazil.
Eur J Oral Sci ; 132(4): e12992, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38771146
ABSTRACT
Finite element analysis (FEA) has been used to analyze the behavior of dental materials, mainly in implantology. However, FEA is a mechanical analysis and few studies have tried to simulate the biological characteristics of the healing process of loaded implants. This study used the rule of mixtures to simulate the biological healing process of immediate implants in an alveolus socket and bone-implant junction interface through FEA. Three-dimensional geometric models of the structures were obtained, and material properties were derived from the literature. The rule of mixtures was used to simulate the healing periods-immediate and early loading, in which the concentration of each cell type, based on in vivo studies, influenced the final elastic moduli. A 100 N occlusal load was simulated in axial and oblique directions. The models were evaluated for maximum and minimum principal strains, and the bone overload was assessed through Frost's mechanostat. There was a higher strain concentration in the healing regions and cortical bone tissue near the cervical portion. The bone overload was higher in the immediate load condition. The method used in this study may help to simulate the biological healing process and could be useful to relate FEA results to clinical practice.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cicatrización de Heridas / Implantes Dentales / Alveolo Dental / Análisis de Elementos Finitos / Módulo de Elasticidad / Carga Inmediata del Implante Dental Límite: Humans Idioma: En Revista: Eur J Oral Sci Asunto de la revista: ODONTOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cicatrización de Heridas / Implantes Dentales / Alveolo Dental / Análisis de Elementos Finitos / Módulo de Elasticidad / Carga Inmediata del Implante Dental Límite: Humans Idioma: En Revista: Eur J Oral Sci Asunto de la revista: ODONTOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Reino Unido