Your browser doesn't support javascript.
loading
Reactive oxygen species act as the key signaling molecules mediating light-induced anthocyanin biosynthesis in Eucalyptus.
Zhu, Linhui; Liao, Yuwu; Zhang, Tingting; Zeng, Zhiyu; Wang, Jianzhong; Duan, Lanjuan; Chen, Xin; Lin, Kai; Liang, Xiuqing; Han, Zewei; Huang, Yunkai; Wu, Wenfei; Hu, Hao; Xu, Zeng-Fu; Ni, Jun.
Afiliación
  • Zhu L; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
  • Liao Y; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
  • Zhang T; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
  • Zeng Z; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
  • Wang J; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Dongmen Forest Farm, Chongzuo, 532108, China.
  • Duan L; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
  • Chen X; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
  • Lin K; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
  • Liang X; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
  • Han Z; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
  • Huang Y; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
  • Wu W; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
  • Hu H; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
  • Xu ZF; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China. Electronic address: zfx
  • Ni J; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China. Electronic address: nij
Plant Physiol Biochem ; 212: 108715, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38761541
ABSTRACT
Light plays a pivotal role in regulating anthocyanin biosynthesis in plants, and the early light-responsive signals that initiate anthocyanin biosynthesis remain to be elucidated. In this study, we showed that the anthocyanin biosynthesis in Eucalyptus is hypersensitive to increased light intensity. The combined transcriptomic and metabolomic analyses were conducted on Eucalyptus leaves after moderate (ML; 100 µmol m-2 s-1) and high (HL; 300 µmol m-2 s-1) light intensity treatments. The results identified 1940, 1096, 1173, and 2756 differentially expressed genes at 6, 12, 24, and 36 h after HL treatment, respectively. The metabolomic results revealed the primary anthocyanin types, and other differentially accumulated flavonoids and phenylpropane intermediates that were produced in response to HL, which well aligned with the transcriptome results. Moreover, biochemical analysis showed that HL inhibited peroxidase activity and increased the ROS level in Eucalyptus leaves. ROS depletion through co-application of the antioxidants rutin, uric acid, and melatonin significantly reduced, and even abolished, anthocyanin biosynthesis induced by HL treatment. Additionally, exogenous application of hydrogen peroxide efficiently induced anthocyanin biosynthesis within 24 h, even under ML conditions, suggesting that ROS played a major role in activating anthocyanin biosynthesis. A HL-responsive MYB transcription factor EgrMYB113 was identified to play an important role in regulating anthocyanin biosynthesis by targeting multiple anthocyanin biosynthesis genes. Additionally, the results demonstrated that gibberellic acid and sugar signaling contributed to HL-induced anthocyanin biosynthesis. Conclusively, these results suggested that HL triggers multiple signaling pathways to induce anthocyanin biosynthesis, with ROS acting as indispensable mediators in Eucalyptus.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Especies Reactivas de Oxígeno / Eucalyptus / Luz / Antocianinas Idioma: En Revista: Plant Physiol Biochem Asunto de la revista: BIOQUIMICA / BOTANICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Francia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Especies Reactivas de Oxígeno / Eucalyptus / Luz / Antocianinas Idioma: En Revista: Plant Physiol Biochem Asunto de la revista: BIOQUIMICA / BOTANICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Francia