Your browser doesn't support javascript.
loading
Mechanochemically-induced glass formation from two-dimensional hybrid organic-inorganic perovskites.
Ye, Chumei; Lampronti, Giulio I; McHugh, Lauren N; Castillo-Blas, Celia; Kono, Ayano; Chen, Celia; Robertson, Georgina P; Nagle-Cocco, Liam A V; Xu, Weidong; Stranks, Samuel D; Martinez, Valentina; Brekalo, Ivana; Karadeniz, Bahar; Uzarevic, Krunoslav; Xue, Wenlong; Kolodzeiski, Pascal; Das, Chinmoy; Chater, Philip; Keen, David A; Dutton, Siân E; Bennett, Thomas D.
Afiliación
  • Ye C; Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge Cambridgeshire CB3 0FS UK tdb35@cam.ac.uk.
  • Lampronti GI; Cavendish Laboratory, University of Cambridge J. J. Thomson Avenue Cambridge Cambridgeshire CB3 0HE UK.
  • McHugh LN; Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge Cambridgeshire CB3 0FS UK tdb35@cam.ac.uk.
  • Castillo-Blas C; Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK.
  • Kono A; Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge Cambridgeshire CB3 0FS UK tdb35@cam.ac.uk.
  • Chen C; Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge Cambridgeshire CB3 0FS UK tdb35@cam.ac.uk.
  • Robertson GP; Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge Cambridgeshire CB3 0FS UK tdb35@cam.ac.uk.
  • Nagle-Cocco LAV; Cavendish Laboratory, University of Cambridge J. J. Thomson Avenue Cambridge Cambridgeshire CB3 0HE UK.
  • Xu W; Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge Cambridgeshire CB3 0FS UK tdb35@cam.ac.uk.
  • Stranks SD; Cavendish Laboratory, University of Cambridge J. J. Thomson Avenue Cambridge Cambridgeshire CB3 0HE UK.
  • Martinez V; Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive Cambridge Cambridgeshire CB3 0AS UK.
  • Brekalo I; Cavendish Laboratory, University of Cambridge J. J. Thomson Avenue Cambridge Cambridgeshire CB3 0HE UK.
  • Karadeniz B; Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive Cambridge Cambridgeshire CB3 0AS UK.
  • Uzarevic K; Division of Physical Chemistry, Ruder Boskovic Institute Zagreb Croatia.
  • Xue W; Division of Physical Chemistry, Ruder Boskovic Institute Zagreb Croatia.
  • Kolodzeiski P; Division of Physical Chemistry, Ruder Boskovic Institute Zagreb Croatia.
  • Das C; Division of Physical Chemistry, Ruder Boskovic Institute Zagreb Croatia.
  • Chater P; Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Germany.
  • Keen DA; Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Germany.
  • Dutton SE; Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund Otto-Hahn-Straße 6 44227 Dortmund Germany.
  • Bennett TD; Department of Chemistry, SRM University-AP Andhra Pradesh-522240 India.
Chem Sci ; 15(19): 7198-7205, 2024 May 15.
Article en En | MEDLINE | ID: mdl-38756817
ABSTRACT
Hybrid organic-inorganic perovskites (HOIPs) occupy a prominent position in the field of materials chemistry due to their attractive optoelectronic properties. While extensive work has been done on the crystalline materials over the past decades, the newly reported glasses formed from HOIPs open up a new avenue for perovskite research with their unique structures and functionalities. Melt-quenching is the predominant route to glass formation; however, the absence of a stable liquid state prior to thermal decomposition precludes this method for most HOIPs. In this work, we describe the first mechanochemically-induced crystal-glass transformation of HOIPs as a rapid, green and efficient approach for producing glasses. The amorphous phase was formed from the crystalline phase within 10 minutes of ball-milling, and exhibited glass transition behaviour as evidenced by thermal analysis techniques. Time-resolved in situ ball-milling with synchrotron powder diffraction was employed to study the microstructural evolution of amorphisation, which showed that the crystallite size reaches a comminution limit before the amorphisation process is complete, indicating that energy may be further accumulated as crystal defects. Total scattering experiments revealed the limited short-range order of amorphous HOIPs, and their optical properties were studied by ultraviolet-visible (UV-vis) spectroscopy and photoluminescence (PL) spectroscopy.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chem Sci Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chem Sci Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido