Regulation of phonon localization on thermal transport in complex networks.
Phys Rev E
; 109(4-1): 044311, 2024 Apr.
Article
en En
| MEDLINE
| ID: mdl-38755911
ABSTRACT
The regulation of thermal transport is a challenging topic in complex networks. At present, the hidden physical mechanism behind thermal transport is poorly understood. This paper addresses this issue by proposing a complex network model that focuses on the thermal transport regulation through the manipulation of the network's degree distribution and clustering coefficient. Our findings indicate that increasing the degree distribution regulation parameter σ leads to reduced phonon localization and improved thermal transport efficiency. Conversely, increasing the clustering coefficient c results in enhanced phonon localization and reduced thermal transport efficiency. Meanwhile, by calculating the pseudodispersion relation of the network, we find that the maximum (or the second smallest) eigenfrequency decreases with increasing σ (or c). Finally, we elucidate that phonon localization plays a pivotal role in the thermal transport of the network, as demonstrated through density of states and the participation ratio.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Phys Rev E
Año:
2024
Tipo del documento:
Article
Pais de publicación:
Estados Unidos