Your browser doesn't support javascript.
loading
Computation of Overhauser dynamic nuclear polarization processes reveals fundamental correlation between water dynamics, structure, and solvent restructuring entropy.
Robinson Brown, Dennis C; Webber, Thomas R; Casey, Thomas M; Franck, John; Shell, M Scott; Han, Songi.
Afiliación
  • Robinson Brown DC; Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA.
  • Webber TR; Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA.
  • Casey TM; Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
  • Franck J; Department of Chemistry, Syracuse University, Syracuse, NY, USA.
  • Shell MS; Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA.
  • Han S; Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA.
Phys Chem Chem Phys ; 26(20): 14637-14650, 2024 May 22.
Article en En | MEDLINE | ID: mdl-38742831
ABSTRACT
Hydration water dynamics, structure, and thermodynamics are crucially important to understand and predict water-mediated properties at molecular interfaces. Yet experimentally and directly quantifying water behavior locally near interfaces at the sub-nanometer scale is challenging, especially at interfaces submerged in biological solutions. Overhauser dynamic nuclear polarization (ODNP) experiments measure equilibrium hydration water dynamics within 8-15 angstroms of a nitroxide spin probe on instantaneous timescales (10 picoseconds to nanoseconds), making ODNP a powerful tool for probing local water dynamics in the vicinity of the spin probe. As with other spectroscopic techniques, concurrent computational analysis is necessary to gain access to detailed molecular level information about the dynamic, structural, and thermodynamic properties of water from experimental ODNP data. We chose a model system that can systematically tune the dynamics of water, a water-glycerol mixture with compositions ranging from 0 to 0.3 mole fraction glycerol. We demonstrate the ability of molecular dynamics (MD) simulations to compute ODNP spectroscopic quantities, and show that translational, rotational, and hydrogen bonding dynamics of hydration water align strongly with spectroscopic ODNP parameters. Moreover, MD simulations show tight correlations between the dynamic properties of water that ODNP captures and the structural and thermodynamic behavior of water. Hence, experimental ODNP readouts of varying water dynamics suggest changes in local structural and thermodynamic hydration water properties.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido