Your browser doesn't support javascript.
loading
Efficient ozone decomposition in high humidity environments using novel iron-doped OMS-2-loaded activated carbon material.
Qing, Qishun; Zhu, Shouwang; Jin, Hongyang; Mei, Tianhong; Liu, Wei; Zhao, Songjian.
Afiliación
  • Qing Q; School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, People's Republic of China.
  • Zhu S; School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, People's Republic of China.
  • Jin H; School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, People's Republic of China.
  • Mei T; School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, People's Republic of China.
  • Liu W; Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing, Jiangsu, 213001, People's Republic of China.
  • Zhao S; School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, People's Republic of China. zhaosongjian@jsut.edu.cn.
Environ Sci Pollut Res Int ; 31(24): 35678-35687, 2024 May.
Article en En | MEDLINE | ID: mdl-38740682
ABSTRACT
This study effectively addresses the rapid deactivation of manganese-based catalysts in humid environments during ozone decomposition by introducing iron-doped manganese oxide octahedral molecular sieve (Fe-OMS-2) catalysts supported on activated carbon (AC). By optimizing the doping ratio of Fe-OMS-2, the Fe-OMS-20.5/AC catalyst achieves nearly 100% ozone decomposition efficiency across a wide range of relative humidity levels (0 to 60%), even at elevated air flow rates of 800 L·g-1·h-1, outperforming standalone AC, Fe-OMS-2, or a simple mixture of OMS-2 and AC. The Fe-OMS-20.5/AC catalyst features a porous surface and a mesoporous structure, providing a substantial specific surface area that facilitates the uniform distribution of the Fe-OMS-2 active phase on the AC surface. The incorporation of Fe3+ ions enhances electron transfer between valence state transitions of Mn, thereby improving the catalyst's efficiency in ozone decomposition. Additionally, the AC component protects catalytic sites and enhances the catalyst's humidity resistance. In conclusion, this research presents a novel strategy for developing highly efficient and cost-effective ozone decomposition catalysts that enhance dehumidification, significantly contributing to industrial ozone treatment technologies and advancing environmental protection.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ozono / Carbón Orgánico / Humedad / Hierro Idioma: En Revista: Environ Sci Pollut Res Int Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2024 Tipo del documento: Article Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ozono / Carbón Orgánico / Humedad / Hierro Idioma: En Revista: Environ Sci Pollut Res Int Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2024 Tipo del documento: Article Pais de publicación: Alemania